Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x2 - x)2 - 2 * (x2 - x) - 15
đặt x2 - x = a
có: a2 - 2a - 15 = (a2 - 2a + 1) - 16 = (a - 1)2 - 16 = (a - 5) (a + 3)
thay vào đc: (x2 - x - 5) (x2 - x +3)
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)
Đặt \(x^2+5x+4=t\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)
\(=t.\left(t+2\right)-15\)
\(=t^2+2t+1-16\)
\(=\left(t+1\right)^2-4^2\)
\(=\left(t-3\right)\left(t+5\right)\)
\(=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)
Ta có :
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)
\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-15\)
\(=\left[x\left(x+4\right)+1\left(x+4\right)\right]\left[x\left(x+3\right)+2\left(x+3\right)\right]-15\)
\(=\left(x^2+4x+x+4\right)\left(x^2+3x+2x+6\right)-15\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)
\(=\left(x^2+5x+4\right)\left[\left(x^2+5x+4\right)+2\right]-15\)(1)
Đặt \(x^2+5x+4=y\)thì (1) trở thành :
\(y\left(y+2\right)-15\)
\(=y^2+2y-15\)
\(=y^2+5y-3y-15\)
\(=\left(y^2+5y\right)-\left(3y+15\right)\)
\(=y\left(y+5\right)-3\left(y+5\right)\)
\(=\left(y-3\right)\left(y+5\right)\)(2)
Thay \(y=x^2+5x+4\)thì (2) trở thành:
\(\left(x^2+5x+4-3\right)\left(x^2+5x+4+5\right)\)
\(=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)
đặt x^2+x = y
=> y^2 - 2y - 15
= y^2 - 2y + 1 - 16
= ( y - 1 )^2 - 16
= ( y - 1 )^2 - 4^2
= ( y - 1 - 4 ) x ( y-1+4)
=(y -5) (y+3)
= (x^2 +x-5) (x^2+x+3)
Bài 1 :
\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
Bài 2 :
\(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)
\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)
Tick đúng nha
\(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-5\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)\left(x^2+x+3\right)-5\left(x^2+x+3\right)\)
\(=\left(x^2+x-5\right)\left(x^2+x+3\right)\)
(x^2+x)^2-2(x^2+x)-15
=(x2+x)2-2(x2+x)+1-16
=(x2+x-1)2-16
=(x2+x-1+4)(x2+x-1-4)
=(x2+x+3)(x2+x-5)