K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2015

 

(x^2+x)^2-2(x^2+x)-15

=(x2+x)2-2(x2+x)+1-16

=(x2+x-1)2-16

=(x2+x-1+4)(x2+x-1-4)

=(x2+x+3)(x2+x-5)

26 tháng 6 2016

(x2 - x)2 - 2 * (x2 - x) - 15 

đặt x2 - x = a

có: a2 - 2a - 15 = (a2 - 2a + 1) - 16 = (a - 1)2 - 16 = (a - 5) (a + 3) 

thay vào đc:  (x2 - x - 5) (x2 - x +3)

26 tháng 6 2016

đặt x^2 - x = t
phương trình trở thành 
t^2-2t-15
= t^2 - 2t + 1 -16
= (t^2 - 1) - 16
=> (x^2 - x - 1) -16

26 tháng 6 2016

đặt x^2 - x = t
phương trình trở thành 
t^2-2t-15
= t^2 - 2t + 1 -16
= (t^2 - 1) - 16
=> (x^2 - x - 1) -16

26 tháng 6 2016

đặt x^2 - x = t
phương trình trở thành 
t^2-2t-15
= t^2 - 2t + 1 -16
= (t^2 - 1) - 16
=> (x^2 - x - 1) -16

1 tháng 12 2018

mở sách giải ra mà cop

4 tháng 12 2018

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)

Đặt \(x^2+5x+4=t\)

\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)

\(=t.\left(t+2\right)-15\)

\(=t^2+2t+1-16\)

\(=\left(t+1\right)^2-4^2\)

\(=\left(t-3\right)\left(t+5\right)\)

\(=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)

4 tháng 12 2018

Ta có :

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)

\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-15\)

\(=\left[x\left(x+4\right)+1\left(x+4\right)\right]\left[x\left(x+3\right)+2\left(x+3\right)\right]-15\)

\(=\left(x^2+4x+x+4\right)\left(x^2+3x+2x+6\right)-15\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)

\(=\left(x^2+5x+4\right)\left[\left(x^2+5x+4\right)+2\right]-15\)(1)

Đặt \(x^2+5x+4=y\)thì (1) trở thành :

\(y\left(y+2\right)-15\)

\(=y^2+2y-15\)

\(=y^2+5y-3y-15\)

\(=\left(y^2+5y\right)-\left(3y+15\right)\)

\(=y\left(y+5\right)-3\left(y+5\right)\)

\(=\left(y-3\right)\left(y+5\right)\)(2)

Thay \(y=x^2+5x+4\)thì (2) trở thành:

\(\left(x^2+5x+4-3\right)\left(x^2+5x+4+5\right)\)

\(=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)

28 tháng 10 2017

đặt x^2+x = y
=> y^2 - 2y - 15
= y^2 - 2y + 1 - 16

= ( y - 1 )^2 - 16

= ( y - 1 )^2 - 4^2

= ( y - 1 - 4 ) x ( y-1+4)

=(y -5) (y+3)

= (x^2 +x-5) (x^2+x+3)

3 tháng 8 2015

Bài 1 :

\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)

Bài 2 :

 \(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)

\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)

=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)

Tick đúng nha 

1 tháng 8 2021

X^2-6+8

11 tháng 9 2017

\(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)

\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-5\left(x^2+x\right)-15\)

\(=\left(x^2+x\right)\left(x^2+x+3\right)-5\left(x^2+x+3\right)\)

\(=\left(x^2+x-5\right)\left(x^2+x+3\right)\)