K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

hey girl fix đề đi nhé hình như sai rồi :))

3 tháng 8 2017

Cô t cho như thế mà...

21 tháng 8 2021

a)2x^2+xy-y^2-x+2y-1

=2x^2+xy-x-(y-1)^2

=2x^2+x(y-1)-(y-1)^2

=2a^2+ab-b^2         với a=x,b=y-1

=2a^2+2ab-ab-b^2

=(2a-b)(a+b)

=(2x-y+1)(x+y-1)

a: \(A=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)+\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2\)

b: \(B=5x^2-7x\sqrt{y}+2y\)

\(=5x^2-5x\sqrt{y}-2x\sqrt{y}+2y\)

\(=5x\left(x-\sqrt{y}\right)-2\sqrt{y}\left(x-\sqrt{y}\right)\)

\(=\left(x-\sqrt{y}\right)\left(5x-2\sqrt{y}\right)\)

20 tháng 11 2021

câu b sai r 

\(\dfrac{1}{3}xy+x^2z+xz=3x\left(\dfrac{1}{9}y+\dfrac{1}{3}xz+\dfrac{1}{3}z\right)\)

AH
Akai Haruma
Giáo viên
20 tháng 11 2021

Lời giải:

a.

$=\frac{1}{2}(x^2-4y^2)=\frac{1}{2}[x^2-(2y)^2]=\frac{1}{2}(x-2y)(x+2y)$

b.

$=\frac{1}{3}x(y+3xz+3z)$

c.

$=\frac{2}{25}x(225x^2-4)=\frac{2}{25}(15x-2)(15x+2)$

d.

$=\frac{1}{5}x^2(2+25x+5y)$

11 tháng 6 2016

\(x^4-2y^4-x^2y^2+x^2+y^2=\left(x^4-y^4\right)-\left(x^2y^2-x^2\right)+\left(y^2-y^4\right)=\left(x^2-y^2\right)\left(x^2+y^2\right)-x^2\left(y^2-1\right)-y^2\left(y^2-1\right)=\left(x^2+y^2\right)\left(x^2-y^2\right)-\left(y^2-1\right)\left(x^2+y^2\right)=\left(x^2+y^2\right)\left(x^2-y^2-y^2+1\right)=\left(x^2+y^2\right)\left(x^2-2y^2+1\right)\)

2 tháng 10 2016

\(4\left(1+x\right)\left(1+y\right)\left(1+x+y\right)-3x^2y^2=4\left(1+x+y+xy\right)\left(1+x+y\right)-3x^2y^2\)

\(=4\left(1+x+y\right)^2+4xy\left(1+x+y\right)+x^2y^2-4x^2y^2\)

\(=\left[2\left(1+x+y\right)+xy\right]^2-\left(2xy\right)^2=\left(2+2x+2y+xy-2xy\right)\left(2+2x+2y+xy+2xy\right)\)

\(=\left(2+2x+2y-xy\right)\left(2+2x+2y+3xy\right)\)

2 tháng 10 2016

giúp mình câu khác được ko? câu này mình biết làm òi

NV
23 tháng 10 2021

a.

\(2x^3-x^2y+x^2+y^2-2xy-y=0\)

\(\Leftrightarrow x^2\left(2x-y+1\right)-y\left(2x-y+1\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)\left(2x-y+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-y=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x^2\\y=2x+1\end{matrix}\right.\)

Thế vào pt đầu:

\(\left[{}\begin{matrix}x^3+x-2=0\\x\left(2x+1\right)+x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x^2+x+2\right)=0\\x^2+x-1=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

 

NV
23 tháng 10 2021

b.

\(x^2-2xy+x=-y\)

Thế vào \(y^2\) ở pt dưới:

\(x^2\left(x^2-4y+3\right)+\left(x^2-2xy+x\right)^2=0\)

\(\Leftrightarrow x^2\left(x^2-4y+3\right)+x^2\left(x-2y+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x^2-4y+3+\left(x-2y+1\right)^2=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x^2-4xy+2x+4y^2-8y+4=0\)

\(\Leftrightarrow2\left(x^2-2xy+x\right)+4y^2-8y+4=0\)

\(\Leftrightarrow-2y+4y^2-8y+4=0\)

\(\Leftrightarrow...\)