Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(f\left(x\right)+g\left(x\right)=2x^3-2x^2+4x\)
b: \(f\left(x\right)-g\left(x\right)=-2x^2+2x+2\)
\(2x-3x^2+x\)
\(=x\left(2-3x+1\right)\)
\(=x\left(-3x+3\right)\)
\(=-3x\left(x-1\right)\)
2x - 3x2 + x
=x.(2-3x+1)
=x.(3-3x)
=x.(3.(1-x))
=3x.(1-x)
\(x^2-2x-35\)
\(=x^2-2x+1-36\)
\(=\left(x-1\right)^2-36\)
\(=\left(x-1\right)^2-6^2\)
\(=\left(x-1-6\right)\left(x-1+6\right)\)
\(=\left(x-7\right)\left(x+5\right)\)
Ủng hộ mik nha
Thanks @@@@@@
A(x)+B(x)=2x-3x3+2x2+1+4x3+2x2-5
= x3+4x2+2x-4
thay x=1 vào B(x) ta được
B(x)=4.13+2.13-5
=4+2-5
=1
\(A\left(x\right)+B\left(x\right)=\left(x+2\right)\left(x^2+2x-2\right)\)
thay x=1 \(=>A\left(1\right)+B\left(1\right)=3\left(1+2-2\right)=3\)
a) (5x3 – 2x2 + 4x – 4) . ( x3 + 3x2 – 5)
= 5x3 . ( x3 + 3x2 – 5) - 2x2 . ( x3 + 3x2 – 5) + 4x . ( x3 + 3x2 – 5) – 4 . ( x3 + 3x2 – 5)
= 5x3 . x3 + 5x3 . 3x2 + 5x3 . (-5) – [ 2x2 . x3 + 2x2 . 3x2 +2x2 . (-5)] + [4x . x3 + 4x. 3x2 + 4x . (-5)] – [ 4x3 + 4.3x2 + 4.(-5)]
= 5x6 + 15x5 – 25x3 – (2x5 + 6x4 – 10x2) + 4x4 + 12x3 – 20x – (4x3 + 12x2 – 20)
= 5x6 + 15x5 – 25x3 – 2x5 - 6x4 + 10x2 + 4x4 + 12x3 – 20x – 4x3 - 12x2 + 20
= 5x6 + (15x5 – 2x5 ) + (- 6x4 + 4x4 ) + (-25x3 + 12x3 – 4x3 ) + (10x2 - 12x2 ) – 20x + 20
= 5x6 + 13x5 – 2x4 – 17x3 -2x2 – 20x + 20
b) (-2,5.x4 + 0,5x2 + 1) . (4x3 – 2x + 6)
= -2,5.x4 . (4x3 – 2x + 6) + 0,5x2 . (4x3 – 2x + 6) + 1. (4x3 – 2x + 6)
= (-2,5.x4) . 4x3 + (-2,5.x4 ) . (-2x) + (-2,5.x4 ) . 6 + 0,5x2 . 4x3 + 0,5x2 . (-2x) + 0,5x2 . 6 + 4x3 – 2x + 6
= -10x7 + 5x5 – 15x4 + 2x5 – x3 + 3x2 + 4x3 – 2x + 6
= -10x7 + ( 5x5 + 2x5 ) - 15x4 + (– x3 + 4x3 ) + 3x2 – 2x + 6
= -10x7 +7x5 - 15x4 + 3x3 + 3x2 – 2x + 6
casio fx 570 thì ấn mode => 5 => 3 sau điền hệ số a;b;c
casio fx 580 thì ấn mode => 9 => 2 => 2 => điền hệ số a;b;c
có cả cách này à =)))
menu setup -> 9 -> 2 - > 2 (pt cần phân tích) -> nhập hệ số của pt vào từng biến thích hợp -> ''=''
VD : \(A=x^2+4x-5\)có nghiệm \(x_1=1;x_2=-5\)
vậy đa thức cần phân tích là : \(\left(x-1\right)\left(x+5\right)=x^2+5x-x-5\)
Vậy \(A=x^2+4x-5=x^2+5x-x-5=\left(x-1\right)\left(x+5\right)\)
tương tự nhé
\(x^3+2x^2-2x-12=x^3-2x^2+4x^2-8x+6x-12\)
\(=x^2\left(x-2\right)+4x\left(x-2\right)+6\left(x-2\right)=\left(x-2\right)\left(x^2+4x+6\right)\)
\(x^3+2x^2-2x-12\)
\(=x^3-2x^2+4x^2-8x+6x-12\)
\(=x^2\left(x-2\right)+4x\left(x-2\right)+6\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+4x+6\right)\)
hk tốt
^^