Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=x^3 -8y^3 -2(x-2y)
=(x-2y)(x^2 +2xy +4y^2)- 2(x-2y)
=(x-2y)(x^2+2x +4y^2-2)
k day nhe
\(\frac{2}{3}x-\frac{1}{9}x^2-1\)
\(=-\left(\frac{1}{9}x^2-\frac{2}{3}x+1\right)\)
\(=-\left[\left(\frac{1}{3}x\right)^2-2\cdot\frac{1}{3}x\cdot1+1^2\right]\)
\(=-\left(\frac{1}{3}x-1\right)^2\)
\(x^2-7x+9\)
\(=x^2-2\cdot x\cdot\frac{7}{2}+\left(\frac{7}{2}\right)^2-\frac{13}{4}\)
\(=\left(x-\frac{7}{2}\right)^2-\left(\frac{\sqrt{13}}{2}\right)^2\)
\(=\left(x-\frac{7}{2}-\frac{\sqrt{13}}{2}\right)\left(x-\frac{7}{2}+\frac{\sqrt{13}}{2}\right)\)
\(=\left(x-\frac{7+\sqrt{13}}{2}\right)\left(x-\frac{7-\sqrt{13}}{2}\right)\)
a)\(x^2+4x-4y^2-8y\)
\(=x^2+2xy+4x-2xy-4y^2-8y\)
\(=x\left(x+2y+4\right)-2y\left(x+2y+4\right)\)
\(=\left(x-2y\right)\left(x+2y+4\right)\)
b)sai đề
c)sai đề tiếp
a)x2+4x-4y2-8y=(x2-4y2)+(4x-8y)
=(x+2y(x-2y)+4(x-2y)
=(x-2y)(x+2y+4)
7, \(27x^3+y^3=\left(3x+y\right)\left(9x^2-3xy+y^2\right)\)
8, \(8x^3-\frac{1}{125}y^3=\left(2x-\frac{1}{5}y\right)\left(4x^2+\frac{2}{5}xy+\frac{1}{25}y^2\right)\)
9, ĐK x >= 0
\(x-2\sqrt{x}-3=x-3\sqrt{x}+\sqrt{x}-3\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+1\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)
10, \(-4x^2-4x+10=-\left(4x^2+4x+1\right)+11\)
\(=-\left[\left(2x+1\right)^2-11\right]=-\left(2x+1-\sqrt{11}\right)\left(2x+1+\sqrt{11}\right)\)
11;12 xem lại đề
13, \(-x^3+6xy^2-12xy^2+8y^3=-\left(x^3-6xy^2+12xy^2-8y^3\right)=-\left(x-2y\right)^3\)
Trả lời:
7, \(27x^3+y^3=\left(3x+y\right)\left(9x^2-3xy+y^2\right)\)
8, \(8x^3-\frac{1}{125}y^3=\left(2x-\frac{1}{5}y\right)\left(4x^2+\frac{2}{5}xy+\frac{1}{25}y^2\right)\)
9, \(x-2\sqrt{x}-3\left(ĐK:x\ge0\right)\)
\(=x-3\sqrt{x}+\sqrt{x}-3=\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}-3\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)
10, \(10-4x-4x^2=-\left(4x^2+4x-10\right)=-\left(4x^2+4x+1-11\right)=-\left[\left(2x+1\right)^2-11\right]\)
\(=-\left(2x+1\right)^2+11=-\left[\left(2x+1\right)^2-11\right]=-\left(2x+1-\sqrt{11}\right)\left(2x+1+\sqrt{11}\right)\)
11,sửa đề: \(15x\left(x-3y\right)+20y\left(3y-x\right)=15x\left(x-3y\right)-20y\left(x-3y\right)=5\left(x-3y\right)\left(3x-4y\right)\)
12, \(25x^2-2=\left(5x-\sqrt{2}\right)\left(5x+\sqrt{2}\right)\)
13, sửa đề: \(-x^3+6x^2y-12xy^2+8y^3=-\left(x^3-6x^2y+12xy^2-8y^3\right)=-\left(x-2y\right)^3\)
a, P(x)=2x4-6x3-x3+3x2-5x2+15x-2x+6
=2x3(x-3)-x2(x-3)-5x(x-3)-2(x-3)
=(x-3)(2x3-x2-5x-2)
=(x-3)(2x3-4x2+3x2-6x+x-2)
=(x-3)[2x2(x-2)+3x(x-2)+(x-2)]
=(x-3)(x-2)(2x2+3x+1)=(x-3)(x-2)(x+1)(2x+1)
b,P(x)=(x-3)(x-2)(x+1)(2x-2+3)
=(x-3)(x-2)(x+1)[2(x-1)+3]
=2(x-3)(x-2)(x-1)(x+1)+3(x-3)(x-2)(x+1)
vì x-3,x-2 là 2 SN liên tiếp nên tích của chúng chia hết cho 2 => (x-3)(x-2)(x+1) chia hết cho 2
=>3(x-3)(x-2)(x+1) chia hết cho 6
lập luận đc (x-3)(x-2)(x-1) là tích 3 SN liên tiếp nên chia hết cho 2 và 3 =>(x-3)(x-2)(x-1) cũng chia hết cho 6
Tóm lại P(x) chia hết cho 6 với mọi x \(\in\) Z