\(\frac{2}{3}\)x - \(\frac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

\(\frac{2}{3}x-\frac{1}{9}x^2-1\)

\(=-\left(\frac{1}{9}x^2-\frac{2}{3}x+1\right)\)

\(=-\left[\left(\frac{1}{3}x\right)^2-2\cdot\frac{1}{3}x\cdot1+1^2\right]\)

\(=-\left(\frac{1}{3}x-1\right)^2\)

1 tháng 10 2018

a) \(8x^3-\frac{1}{8}\)

\(=\left(2x\right)^3-\left(\frac{1}{2}\right)^3\)

\(=\left(2x-\frac{1}{2}\right)\left(4x^2+2x+\frac{1}{4}\right)\)

b) \(\frac{1}{25}x^2-64y^2\)

\(=\left(\frac{1}{5}x\right)^2-\left(8y\right)^2\)

\(=\left(\frac{1}{5}x-8y\right)\left(\frac{1}{5}x+8y\right)\)

3 tháng 4 2019

a) \(x^3+y^3+z^3-3xyz\)

\(=x^3+3x^2y+3xy^2+y^3+z^3-3x^2y-3xy^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

5 tháng 4 2019

câu b đâu

30 tháng 11 2015

1. 4-32x3

= 4.(1-8x3)

= 4.[13-(2x)3 ]

= 4.(1-2x).(1+2x+4x2)

2. b. \(\left(\frac{x}{xy-y^2}-\frac{2x-y}{xy-x^2}\right):\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(=\left[\frac{x}{y\left(x-y\right)}+\frac{2x-y}{x\left(x-y\right)}\right]:\left(\frac{y}{xy}+\frac{x}{xy}\right)\)

\(=\left[\frac{x.x}{y\left(x-y\right).x}+\frac{\left(2x-y\right).y}{x\left(x-y\right).y}\right]:\left(\frac{x+y}{xy}\right)\)

\(=\left[\frac{x^2+2xy-y^2}{xy\left(x-y\right)}\right]:\left(\frac{x+y}{xy}\right)\)

\(=\left[\frac{-\left(x-y\right)^2}{xy\left(x-y\right)}\right].\frac{xy}{x+y}\)

\(=\frac{-\left(x-y\right)}{xy}.\frac{xy}{x+y}\)

\(=\frac{y-x}{x+y}\)

23 tháng 4 2021

Bài 1 : 

a, \(\left(a-2\right)^2-b^2=\left(a-2-b\right)\left(a-2+b\right)\)

b, \(2a^3-54b^3=2\left(a^3-27b^3\right)=2\left(a-3b\right)\left(a^2+3ab+9b\right)\)

23 tháng 4 2021

Bài 2 : tự kết luận nhé, ngại mà lười :( 

a, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)

\(\Leftrightarrow\frac{4x-3}{5}-\frac{5x-4}{3}=\frac{6x-2}{7}+3\)

\(\Leftrightarrow\frac{12x-9-25x+20}{15}=\frac{6x-2+21}{7}\)

\(\Leftrightarrow\frac{-13x-29}{15}=\frac{6x+19}{7}\Rightarrow-91x-203=90x+285\)

\(\Leftrightarrow181x=-488\Leftrightarrow x=-\frac{488}{181}\)

b, \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)

\(\Leftrightarrow\frac{4x+8+9\left(2x-1\right)}{12}-\frac{10x-6}{12}=\frac{12x+5}{12}\)

\(\Rightarrow4x+8+18x-9-10x+6=12x+5\)

\(\Leftrightarrow12x+5=12x+5\Leftrightarrow0x=0\)

Vậy phương trình có vô số nghiệm 

c, \(\left|2x-3\right|=4\)

Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=4\Leftrightarrow x=\frac{7}{2}\)

Với \(x< \frac{3}{2}\)pt có dạng : \(2x-3=-4\Leftrightarrow x=-\frac{1}{2}\)

d, \(\left|3x-1\right|-x=2\Leftrightarrow\left|3x-1\right|=x+2\)

Với \(x\ge\frac{1}{3}\)pt có dạng : \(3x-1=x+2\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Với \(x< \frac{1}{3}\)pt có dạng : \(3x-1=-x-2\Leftrightarrow4x=-1\Leftrightarrow x=-\frac{1}{4}\)

8 tháng 12 2017

a) \(x^2+6x+9\)

\(=\left(x+3\right)^2\)

\(=\left(x+3\right)\left(x+3\right)\)

b) \(10x-25-x^2\)

\(=-\left(x^2-10x+25\right)\)

\(=-\left(x-5\right)^2\)

\(=-\left(x-5\right)\left(x-5\right)\)

c) \(8x^3-\frac{1}{8}\)

\(=\left(2x\right)^3-\left(\frac{1}{2}\right)^3\)

\(=\left(2x-\frac{1}{2}\right)\left(4x^2+x+\frac{1}{4}\right)\)

d) \(\frac{1}{25}x^2-64y^2\)

\(=\left(\frac{1}{5}x\right)^2-\left(8y\right)^2\)

\(=\left(\frac{1}{5}x-8y\right)\left(\frac{1}{5}x+8y\right)\)

8 tháng 12 2017

a) \(x^2+6x+9=x^2+2.3.x+3^2\)\(=\left(x+3\right)^2\)

b)\(10x-25-x^2=-\left(x^2-10x+25\right)\)\(=-\left(x^2-2.5.x+5^2\right)=-\left(x+5\right)^2\)

c)\(8x^3-\frac{1}{8}=\left(2x\right)^3-\left(\frac{1}{2}\right)^3\)\(=\left(2x-\frac{1}{2}\right)\left(4x+x+\frac{1}{4}\right)\)

d)\(\frac{1}{25}x^2-64y^2=\left(\frac{1}{5}\right)^2-\left(8y\right)^2\)\(=\left(\frac{1}{5}-8y\right)\left(\frac{1}{5}+8y\right)\)

24 tháng 10 2020

\(x^3+\frac{1}{x^3}=x^3+\left(\frac{1}{x}\right)^3=\left(x+\frac{1}{x}\right)\left(x^2-x+\frac{1}{x^2}\right)\)( x khác 0 )

\(-x^3+9x^2-27x+27=-\left(x^3-9x^2+27x-27\right)=-\left(x-3\right)^3\)

\(\left(xy+1\right)^2-\left(x-y\right)^2=\left(xy+1-x+y\right)\left(xy+1+x-y\right)\)

24 tháng 6 2016

a) \(\frac{1}{25}x^2-64y^2=\left(\frac{1}{5}x+8y\right)\left(\frac{1}{5}x-8y\right)\)

b) \(x^3+\frac{1}{27}=\left(x+\frac{1}{3}\right)\left(x^2-\frac{1}{3}x+\frac{1}{9}\right)\)

c) \(-x^3+9x^2-27x+27\)

\(=27-x^3+9x^2-27x\)

\(=\left(3-x\right)\left(9+3x+x^2\right)+9x\left(x-3\right)\)

\(=\left(3-x\right)\left(9+3x+x^2\right)-9x\left(3-x\right)\)

\(=\left(3-x\right)\left(9+3x+x^2-9x\right)\)

\(=\left(3-x\right)\left(9-6x+x^2\right)=\left(3-x\right)\left(9-3x-3x+x^2\right)\)

\(=\left(3-x\right)\left[3\left(3-x\right)-x\left(3-x\right)\right]=\left(3-x\right)\left(3-x\right)\left(3-x\right)=\left(3-x\right)^3\)

(Nhớ k cho mình với nha!, Mình chắc chắn là mình làm đứng luôn đó! Chúc may mắn nhá!)

24 tháng 6 2016

a/ Ta có: \(\frac{1}{25}x^2-64y^2=\left(\frac{1}{5}x\right)^2-\left(8y\right)^2=\left(\frac{1}{5}x-8y\right)\left(\frac{1}{5}x+8y\right)\)

b/ \(x^3+\frac{1}{27}=x^3+\left(\frac{1}{3}\right)^3=\left(x+\frac{1}{3}\right)\left(x^2-\frac{1}{3}x+\frac{1}{9}\right)\)

c/ Đề sai

15 tháng 1 2018

P(x) = (x^2-1)+(x+1).(x-1)

       = [(x^2-x)+(x-1)]+(x+1).(x-1)

       = (x-1).(x+1)+(x+1).(x-1)

       = 2.(x-1).(x+1)

Tk mk nha