Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a)}x\sqrt{x}+\sqrt{x}-x-1\)
\(=\left(x\sqrt{x}+\sqrt{x}\right)-\left(x+1\right)\)
\(=\sqrt{x}\left(x+1\right)-\left(x+1\right)\)
\(=\left(x+1\right)\left(\sqrt{x}-1\right)\)
\(\text{b)}\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)
\(=\left(\sqrt{ab}+2\sqrt{a}\right)+\left(3\sqrt{b}+6\right)\)
\(=\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)\)
\(=\left(\sqrt{b}+2\right)\left(\sqrt{a}+3\right)\)
\(\text{c)}\left(1+\sqrt{x}\right)^2-4\sqrt{x}\)
\(=\left(1+\sqrt{x}\right)^2-\left(2\sqrt{\sqrt{x}}\right)^2\)
\(=\left(1+\sqrt{x}+2\sqrt{\sqrt{x}}\right)\left(1+\sqrt{x}-2\sqrt{\sqrt{x}}\right)\)
\(\text{d)}\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)
\(=\left(\sqrt{ab}-\sqrt{a}\right)-\left(\sqrt{b}-1\right)\)
\(=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)
\(=\left(\sqrt{b}-1\right)\left(\sqrt{a}-1\right)\)
\(\text{e)}a+\sqrt{a}+2\sqrt{ab}+2\sqrt{b}\)
\(=\left(a+\sqrt{a}\right)+\left(2\sqrt{ab}+2\sqrt{b}\right)\)
\(=\left[\left(\sqrt{a}\right)^2+\sqrt{a}\right]+\left(2\sqrt{ab}+2\sqrt{b}\right)\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)\)
\(=\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\sqrt{b}\right)\)
\(\text{f)}x-2\sqrt{x-1}-a^2\)
\(=\left(\sqrt{x-2}\right)^2\left(\sqrt{\sqrt{x-1}}\right)^2-a^2\)
\(=\left(\sqrt{x-2}\sqrt{\sqrt{x-1}}\right)^2-a^2\)
\(=\left(\sqrt{x-2\sqrt{x-1}}\right)^2-a^2\)
\(=\left(\sqrt{x-2\sqrt{x-1}}+a\right)\left(\sqrt{x-2\sqrt{x-1}}-a\right)\)
Bài 4 :
\(a,\sqrt{x-1}=2\)
=> \(x-1=2^2=4\)
=>\(x=4+1=5\)
Vậy \(x\in\left\{5\right\}\)
\(b,\sqrt{x^2-3x+2}=2\)
=> \(x^2-3x+2=2\)
=> \(x^2-3x=2-2=0\)
=>\(x.\left(x-3\right)=0\)( phân tích đa thức thanh nhân tử )
=> \(\left[{}\begin{matrix}x=0\\x-3=0=>x=0+3=3\end{matrix}\right.\)
Vậy \(x\in\left\{0;3\right\}\)
MÌNH Biết vậy thôi ,
Bài 4 :
c) \(\sqrt{4x+1}=x+1\)ĐK : \(x\ge-1\)
\(\Leftrightarrow4x+1=\left(x+1\right)^2\)
\(\Leftrightarrow x^2+2x+1-4x-1=0\)
\(\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)( thỏa )
d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|=2\)
+) Xét \(x\ge2\)
\(pt\Leftrightarrow\sqrt{x-1}+1-\sqrt{x-1}+1=2\)
\(\Leftrightarrow2=2\)( luôn đúng )
+) Xét \(1\le x< 2\):
\(pt\Leftrightarrow\sqrt{x-1}+1-1+\sqrt{x-1}=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\)( loại )
Vậy \(x\ge2\)
\(A,ĐKXĐ:x;y\ge0\)
\(A=\sqrt{xy}-2\sqrt{y}-5\sqrt{x}+10\)
\(=\sqrt{y}\left(\sqrt{x}-2\right)-5\left(\sqrt{x}-2\right)\)
\(=\left(\sqrt{x}-2\right)\left(\sqrt{y}-5\right)\)
\(ĐKXĐ:x;y\ge0\)
\(B=a\sqrt{x}+b\sqrt{y}-\sqrt{xy}-ab\)
\(=\left(a\sqrt{x}-\sqrt{xy}\right)+\left(b\sqrt{y}-ab\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)+b\left(\sqrt{y}-a\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)
\(=\left(a-\sqrt{y}\right)\left(\sqrt{x}-b\right)\)
cau c í mk thấy bn chép sai đề nên mk sửa lại đề rồi bạn xem lại đề rồi so với bài làm của mk nha có j ko hiểu thì ib mk nha
\(a)VT = \dfrac{{{{\left( {\sqrt a + 1} \right)}^2} - 4\sqrt a }}{{\sqrt a - 1}} + \dfrac{{a + \sqrt a }}{{\sqrt a }}\\ = \dfrac{{a + 2\sqrt a + 1 - 4\sqrt a }}{{\sqrt a - 1}} + \dfrac{{\sqrt a \left( {\sqrt a + 1} \right)}}{{\sqrt a }}\\ = \dfrac{{a - 2\sqrt a + 1}}{{\left( {\sqrt a - 1} \right)}} + \sqrt a + 1\\ = \dfrac{{{{\left( {\sqrt a - 1} \right)}^2}}}{{\sqrt a - 1}} + \sqrt a + 1\\ = \sqrt a - 1 + \sqrt a + 1\\ = 2\sqrt a = VP (đpcm) \)
\(b)VT = \dfrac{{x\sqrt x + y\sqrt y }}{{\sqrt x + \sqrt y }} - {\left( {\sqrt x - \sqrt y } \right)^2}\\ = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\left( {x - \sqrt {xy} + y} \right)}}{{\sqrt x + \sqrt y }} - \left( {x - 2\sqrt {xy} + y} \right)\\ = x - \sqrt {xy} + y - x + 2\sqrt {xy} - y\\ = \sqrt {xy} (đpcm)\\ c)VT = \dfrac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}:\dfrac{{a - b}}{{\sqrt a + \sqrt b }}\\ = \dfrac{{\sqrt {ab} \left( {\sqrt a - \sqrt b } \right)}}{{\sqrt {ab} }}.\dfrac{{\sqrt a + \sqrt b }}{{a - b}}\\ = \sqrt a - \sqrt b .\dfrac{{\sqrt a + \sqrt b }}{{a - b}}\\ = \dfrac{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}{{a - b}}\\ = \dfrac{{a - b}}{{a - b}} = 1 (đpcm)\\ d)VT = \left[ {\dfrac{{{{\left( {\sqrt a - \sqrt b } \right)}^2} + 4\sqrt {ab} }}{{\sqrt a + \sqrt b }} - \dfrac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}} \right]:\sqrt b \\ = \dfrac{{a - 2\sqrt {ab} + b + 4\sqrt {ab} }}{{\sqrt a + \sqrt b }} - \dfrac{{\sqrt {ab} \left( {\sqrt a - \sqrt b } \right)}}{{\sqrt {ab} }}:\sqrt b \\ = \dfrac{{{{\left( {\sqrt a + \sqrt b } \right)}^2}}}{{\sqrt a + \sqrt b }} - \left( {\sqrt a - \sqrt b } \right):\sqrt b \\ = \sqrt a + \sqrt b - \sqrt a + \sqrt b :\sqrt b \\ = \dfrac{{2\sqrt b }}{{\sqrt b }} = 2 (đpcm) \)
Câu c đề sai (đã sửa)
a) 2a−4b=2(a−2b)2a−4b=2(a−2b)
c) 2ax−2ay+2a=2a(x−y+1)2ax−2ay+2a=2a(x−y+1)
e) 3xy(x−4)−9x(4−x)=3x(x−4)(y+3)3xy(x−4)−9x(4−x)=3x(x−4)(y+3)
b,d xem lại đề
1) ta có : \(x\sqrt{x}+\sqrt{x}-x-1=\sqrt{x}\left(x+1\right)-\left(x+1\right)\)
\(=\left(\sqrt{x}-1\right)\left(x+1\right)\)
2) ta có : \(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)
\(=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)
3) ta có : \(x-\sqrt{x}-2=x+\sqrt{x}-2\sqrt{x}-2\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}+1\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\)
4) ta có : \(x-3\sqrt{x}+2=x-\sqrt{x}-2\sqrt{x}+2\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)\)
5) ta có : \(-6x+5\sqrt{x}+1=-6x+6\sqrt{x}-\sqrt{x}+1\)
\(=6\sqrt{x}\left(1-\sqrt{x}\right)+\left(1-\sqrt{x}\right)=\left(6\sqrt{x}+1\right)\left(1-\sqrt{x}\right)\)
6) ta có : \(x+4\sqrt{x}+3=x+\sqrt{x}+3\sqrt{x}+3\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}+1\right)=\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)\)
7) ta có : \(3\sqrt{a}-2a-1=-2a+2\sqrt{a}+\sqrt{a}-1\)
\(=-2\sqrt{a}\left(\sqrt{a}-1\right)+\left(\sqrt{a}-1\right)=\left(1-2\sqrt{a}\right)\left(\sqrt{a}-1\right)\)
8) ta có : \(x+2\sqrt{x-1}=x-1+2\sqrt{x-1}+1\)
\(=\left(\sqrt{x-1}+1\right)^2\)
9) ta có : \(7\sqrt{x}-6x-2=-6x+3\sqrt{x}+4\sqrt{x}-2\)
\(=-3\sqrt{x}\left(2\sqrt{x}-1\right)+2\left(2\sqrt{x}-1\right)=\left(2-3\sqrt{x}\right)\left(2\sqrt{x}-1\right)\)
10) ta có : \(x-5\sqrt{x}+6=x-2\sqrt{x}-3\sqrt{x}+6\)
\(=\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\)
11) ta có : \(x-2+\sqrt{x^2-4}=\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-2\right)\left(x+2\right)}\)
\(=\sqrt{x-2}\left(\sqrt{x-2}+\sqrt{x+2}\right)\)
a,\(=\left(\sqrt{ab}-\sqrt{a}\right)-\left(\sqrt{b}-1\right)=\sqrt{a}\left(\sqrt{b-1}\right)-\left(\sqrt{b}-1\right)=\left(\sqrt{a}-1\right).\left(\sqrt{b}-1\right).\)
mầy phần này dễ mà mình gại đánh máy quá
những phần sau sử dụng hằng đẳng thức nhé
T ms học lp 8 thôi mà . AHuhu =[[