Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a + b + c)(ab + bc + ac) - abc
= a2b + abc +a2c + ab2 + b2c + abc + abc + bc2 + ac2
= (a2b + 2abc + bc2) + (ac2 + a2c) + (ab2 + b2c)
= b(a2 + 2ac + c2) + ac(c + a) + b2(a + c)
= b(a + c) + ac(a + c) + b2(a + c)
= (a + c)[b(a + c) + ac + b2]
= (a + c)(ab + bc + ac + b2)
= (a + c)[b(a + b) + c(a + b)]
= (a + c)(b + c)(a + b)
\(\left(a+b+c\right)\left(ab+bc+ac\right)-abc\)
\(=a^2b+abc+a^2c+b^2a+b^2c+abc+abc+c^2b+c^2a-abc\)
\(=ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a^2+b^2+2ab-2ab\right)+2abc\)
\(=ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2-2abc+2abc\)
\(=\left(a+b\right)\left(ab+c^2+ca+cb\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
\(=a^2b+ab^2-b^2c-bc^2-ac^2+a^2c\)
\(=a^2\left(b+c\right)+a\left(b-c\right)\left(b+c\right)-bc\left(b+c\right)\)
\(=\left(b+c\right)\left(a^2+ab-ac-bc\right)\)
\(=\left(b+c\right)\left[a\left(a+b\right)-c\left(a+b\right)\right]\)
\(=\left(b+c\right)\left(a+b\right)\left(a-c\right)\)
Ta có b + c = (a + b) + (c – a) nên
A = ab(a + b) – bc[(a + b) + (c – a)] – ac(c – a)
= ab(a + b) – bc(a + b) – bc(c – a) – ac(c – a)
= b(a + b)(a – c) – c(c – a)(b + a)
= (a + b)(a – c)(b + c)
Đáp án cần chọn là: B
\(A=\left(a+b+c\right).\left(bc+ca+ab\right)-abc\\ =abc+b^2c+bc^2+a^2c+abc+ac^2+a^2b+ab^2+abc-abc\\ =\left(b^2c+bc^2\right)+\left(a^2b+a^2c\right)+\left(ac^2+abc\right)+\left(ab^2+abc\right)\\ =bc\left(b+c\right)+a^2\left(b+c\right)+ac\left(b+c\right)+ab\left(b+c\right)\\ =\left(b+c\right)\left(bc+a^2+ac+ab\right)\\ =\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]=\left(b+c\right)\left(a+c\right)\left(a+b\right)\)
sửa đề thành \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)
\(=ab\left(a+b\right)+b^2c+bc^2+c^2a+ca^2+2abc\)
\(=ab\left(a+b\right)+\left(b^2c+abc\right)+\left(c^2a+c^2b\right)+\left(a^2c+abc\right)\)
\(=ab\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)+ac\left(a+b\right)\)
\(=\left(a+b\right)\left(ab+bc+a^2+ca\right)\)
\(=\left(a+b\right)\left[\left(ab+bc\right)+\left(c^2+ac\right)\right]\)
\(=\left(a+b\right)\left[b\left(a+c\right)+c\left(c+a\right)\right]\)
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
https://h7.net/hoi-dap/toan-8/phan-h-da-thuc-abc-ab-bc-ca-a-b-c-1-thanh-nhan-tu-faq382483.html