K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

sửa đề thành \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)

                    \(=ab\left(a+b\right)+b^2c+bc^2+c^2a+ca^2+2abc\)

                     \(=ab\left(a+b\right)+\left(b^2c+abc\right)+\left(c^2a+c^2b\right)+\left(a^2c+abc\right)\)

                      \(=ab\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)+ac\left(a+b\right)\)

                      \(=\left(a+b\right)\left(ab+bc+a^2+ca\right)\)

                      \(=\left(a+b\right)\left[\left(ab+bc\right)+\left(c^2+ac\right)\right]\)

                       \(=\left(a+b\right)\left[b\left(a+c\right)+c\left(c+a\right)\right]\)

                        \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)