Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2+2xy+y^2-9z^2=\) \(\left(x+y\right)^2-\left(3z\right)^2\)
\(=\left(x+y-3z\right)\left(x+y+3z\right)\)
a) x3-2x2-x+2
=x(x2-1)+2(-x2+1)
=x(x2-1)-2(x2-1)
=(x2-1)(x-2)
b)
x2+6x-y2+9
=x2+6x+9-y2
=(x+3)2-y2
=(x+3-y)(x+3+y)
a)
\(2x^2y-8xy^2\\ =2xy\left(x-4y\right)\)
b)
\(x^2-2xy+y^2-16\\ =\left(x^2-2xy+y^2\right)-16\\ =\left(x-y\right)^2-16\\ =\left(x-y-4\right)\left(x-y+4\right)\)
a)x^2-4xy+4y^2-4
=(x2-4xy+4y2)-4
=(x-2y)2-4
=(x-2y+2)(x-2y-2)
b)16-x^2+2xy-y^2
=16-(x2-2xy+y2)
=16-(x-y)2
=[4-(x-y)][4+(x-y)]
=(4-x+y)(4+x-y)
\(2xy-x^2-y^2+16\)
\(=-\left(x^2-2xy+y^2-16\right)\)
\(=-\left[\left(x^2-2xy+y^2\right)-4^2\right]\)
\(=-\left[\left(x-y\right)^2-4^2\right]\)
\(=-\left[\left(x-y-4\right)\left(x-y+4\right)\right]\)
\(=-\left(x-y-4\right)\left(x-y+4\right)\)
\(=16-\left(x^2-2xy+y^2\right)\)
\(=4^2-\left(x-y\right)^2=\left(4-x+y\right)\left(4+x-y\right)\)
\(x^2-2xy+y^2-16\)
\(=\left(x-y\right)^2-16\)
\(=\left(x-y-4\right)\left(x-y+4\right)\)
p/s: chúc bạn học tốt
\(x^2-2xy+y^2-16\)
\(\Rightarrow\left(x-y\right)^2-16\)
\(\Rightarrow\left(x-y-4\right)\left(x-y+4\right)\)
Code : Breacker