\(2xy-x^2-y^2+16\)

giúp mình phân tích đa thức này thành nhân tử với. Cám ơn các bạ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2016

\(=16-\left(x^2-2xy+y^2\right)\)

\(=4^2-\left(x-y\right)^2=\left(4-x+y\right)\left(4+x-y\right)\)

24 tháng 9 2016

\(2\left(x^2+2x+1-y^2\right)=2\left[\left(x+1\right)^2-y^2\right]=2\left(x-y+1\right)\left(x+y+1\right)\)

8 tháng 10 2016

25n(n-1)-50(n-1) luôn chia hết cho 150 với mọi n là số nguyên

giúp mình chứng minh nha . Cám ơn mấy bạn

(x-y)2-4

=(x-y)2-22

=(x-y+2).(x-y-2)

17 tháng 9 2016

\(\left(x-y\right)^2-4\)

\(=\left(x-y\right)^2-2^2\)

\(=\left(x-y-2\right)\left(x-y+2\right)\)

20 tháng 8 2020

1. Ta có: \(3xy\left(a^2+b^2\right)+ab\left(x^2-9y^2\right)\)

\(=3xya^2+3xyb^2+abx^2+ab9y^2\)

\(=\left(3xya^2+abx^2\right)+\left(3xyb^2+ab9y^2\right)\)

\(=ax\left(3ya+bx\right)+3by\left(xb+3ya\right)\)

\(=\left(3ya+xb\right)\left(3yb+ax\right)\)

2.Check lại đề hộ mình nha:((

22 tháng 8 2020

Câu 2 nên sủa lại đề nha

2. xy(a2+2b2)+ab(2x2+y2)

=xya2+xy2b2+ab2x2+aby2

=(xya2+aby2)+(xy2b2+ab2x2)

=ay(ax+by)+2bx(by+ax)

=(ax+by(ay+2bx)

17 tháng 9 2016

\(2-25x^2=0\)

\(\Rightarrow25x^2=2\)

\(\Rightarrow x^2=\frac{2}{25}\)

\(\Rightarrow x=\frac{\sqrt{2}}{5}\)

tíc mình nha

17 tháng 9 2016

\(2-25x^2=0\)

\(\Leftrightarrow\left(\sqrt{2}-5x\right)\left(\sqrt{2}+5x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{2}-5x=0\\\sqrt{2}+5x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=-\frac{\sqrt{2}}{5}\end{cases}}\)

Vậy: \(x=\orbr{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=-\frac{\sqrt{2}}{5}\end{cases}}\)

b) \(x^2-x+\frac{1}{4}=0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{1}{2}\)

\(16x^3y+\frac{1}{4}yz^3\)

\(\text{Phân tích thành nhân tử}\)

\(\frac{y\left(\frac{z}{2}+2x\right)\left(z^2-4xz+16x^2\right)}{2}\)

20 tháng 4 2017

Bài giải:

a) x3 – 2x2 + x = x(x2 – 2x + 1) = x(x – 1)2

b) 2x2 + 4x + 2 – 2y2 = 2[(x2 + 2x + 1) – y2]

= 2[(x + 1)2 – y2]

= 2(x + 1 – y)(x + 1 + y)

c) 2xy – x2 – y2 + 16 = 16 – (x2 – 2xy + y2) = 42 – (x – y)2

= (4 – x + y)(4 + x – y)

9 tháng 10 2017

a) \(x^3 - 2x^2 + x\) \(= x(x^2 - 2x + 1)\)

\(= x (x - 1 )^2\)

b) \(2x^2 + 4x + 2 - 2y^2\) \(= 2(x^2 + 2x + 1 - y^2)\)

\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)

\(=2\left[\left(x+1^2\right)-y^2\right]\)

\(= 2 (x+1-y) (x+1+y)\)

c) \(2xy - x^2 - y^2 + 16\) \(= - (x^2 - 2xy + y^2 - 4^2)\)

\(= - [(x^2 - 2xy + y^2) - 4^2]\)

\(= - [(x-y)^2 - 4^2 ]\)

\(= - (x - y - 4) (x- y + 4)\)

19 tháng 7 2019

a) \(x^2+4x-y^2+4\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2-y\right)\left(x+2+y\right)\)

19 tháng 7 2019

c) \(x^2-2xy+y^2-z^2+2zt-t^2\)

\(=\left(x-y\right)^2-\left(z-t\right)^2\)

\(=\left(x-y-z+t\right)\left(x-y+z-t\right)\)

20 tháng 8 2020

\(8xy^3+x\left(x-y\right)^3\)

\(=x\left[8y^3+\left(x-y\right)^3\right]\)

\(=x\left[\left(2y\right)^3+\left(x-y\right)^3\right]\)

\(=x\left(2y+x-y\right)\left[\left(2y\right)^2-2y\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=x\left(x+y\right)\left(4y^2-2xy+2y^2+x^2-2xy+y^2\right)\)

\(=x\left(x+y\right)\left(7y^2+x^2-4xy\right)\)