K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

1.x2-y2+2x+1=(x2+2x+1)-y2=(x+1)2-y2=(x+1-y)(x+1+y)

2.(x2+9)2-36x2=(x2+9)2-(6x)2=(x2+9-6x)(x2+9+6x)=(x-3)2(x+3)2

3.\(8x^3+\dfrac{1}{27}=\left(2x\right)^3+\left(\dfrac{1}{3}\right)^3\\ =\left(2x+\dfrac{1}{3}\right)\text{[}\left(2x\right)^2-2x.\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2\text{]}\\ =\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)\)4.x3-8y3=x3-(2y)3=(x-2y)(x2+2xy+4y2)

2 tháng 8 2018

1.x2-3=x2-(√3)2=(x-√3)(x+√3)

2.\(5x^2-7y^2=\left(\sqrt{5}x\right)^2-\left(\sqrt{7}x\right)^2=\left(\sqrt{5}x-\sqrt{7}x\right)\left(\sqrt{5}x+\sqrt{7}x\right)\)

3.x2-2xy+y2-z2+2zt-t2=(x2-2xy+y2)-(z2-2zt+t2)

=(x-y)2-(z-t)2=(x-y-z+t)(x-y+z-t)

4. x3-3x2+3x-1-y3 =(x3-3x2.1+3x.12-13)-y3=(x-1)3-y3

=(x-1-y)[(x-1)2+(x-1)y+y2]

=(x-y-1)(x2-2x+1+xy-y+y2)

1 tháng 8 2018

đề

1: \(=\dfrac{x^2-1}{x\left(x^2-1\right)}=\dfrac{1}{x}\)

2: \(=\dfrac{\left(x-2\right)\left(x+2\right)}{y\left(x-2\right)}=\dfrac{x+2}{y}\)

3: \(=\dfrac{2x^2+2xy-xy-y^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{\left(x+y\right)\left(2x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{2x-y}{x-y}\)

4: \(=\dfrac{x\left(x^2-1\right)}{x\left(x^2-x-2\right)}=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\dfrac{x-1}{x-2}\)

 

24 tháng 6 2018

Giải:

1) \(a^3-3a^2+3a-1\)

\(=a^3-3a^2.1+3a.1^2-1^3\)

\(=\left(a-1\right)^3\)

Vậy ...

2) \(x^3+6x^2+12x+8\)

\(=x^3+3.x^2.2+3.x.2^2+2^3\)

\(=\left(x+2\right)^3\)

Vậy ...

3) \(8x^3-12x^2+6x-1\)

\(=\left(2x\right)^3-3.\left(2x\right)^2.1+3.2x.1^2-1^3\)

\(=\left(2x-1\right)^3\)

Vậy ...

4) \(x^3-6x^2y+12xy^2-8y^3\)

\(=x^3-3.x^2.2y+3.x.\left(2y\right)^2-\left(2y\right)^3\)

\(=\left(x-2y\right)^3\)

Vậy ...

2 tháng 8 2018

A=26x2+y(2x+y)-10x(x+y)

A=26x2+2xy+y2-10x2-10xy

A=16x2-8xy+y2 =(4x)2-2.4x.y+y2 =(4x-y)2

Thay x=0,25y,ta có: A=(4.0,25y - y)2=(y-y)2=0

B=x3+6x2y+12xy2+8y3

B=x3+3x22y+3x(2y)2+(2y)3 =(x+2y)3

Có x+2y=-5 ⇒ x=-5-2y

Thay x=-5-2y vào, ta có B=(-5-2y+2y)3=(-5)3=-125

1 tháng 7 2018

1) \(B=\dfrac{1}{8}x^3-\dfrac{3}{4}x^2+\dfrac{3}{2}x-1=\left(\dfrac{1}{2}x-1\right)^3\)

thay x =-2 vào B, ta được:

\(B=\left(\dfrac{1}{2}\cdot\left(-2\right)-1\right)^3=\left(-2\right)^3=-8\)

2) \(C=x^3+3x^2+3x-999=\left(x+1\right)^3-1000\)

thay x =99 vào B, ta được:

\(C=\left(99+1\right)^3-1000=999000\)

3) \(D=27x^3+54x^2+36x+4=\left(3x+2\right)^3-4\)

thay x =-2 vào D, ta được:

\(D=\left(3\left(-2\right)+2\right)^3-4=-68\)

12 tháng 9 2018

1,\(\dfrac{x^2-6x+9}{x^2-8x+15}=\dfrac{\left(x-3\right)^2}{\left(x-3\right).\left(x-5\right)}=\dfrac{x-3}{x-5}\)

2,\(\dfrac{x^2+5x}{2x+10}=\dfrac{x.\left(x+5\right)}{2.\left(x+5\right)}=\dfrac{x}{2}\)

3,\(\dfrac{25-10x+x^2}{xy-5y}=\dfrac{\left(x-5\right)^2}{y.\left(x-5\right)}=\dfrac{x-5}{y}\)

4,\(\dfrac{x^2+3x-y^2-3y}{x^2-y^2}\\ \\ =\dfrac{\left(x+y\right).\left(x-y\right)+3.\left(x-y\right)}{\left(x-y\right).\left(x+y\right)}\\ \\ =\dfrac{\left(x-y\right).\left(x+y+3\right)}{\left(x-y\right).\left(x+y\right)}\\ \\ =\dfrac{x+y+3}{x+y}\)5,\(\dfrac{x^3+2x^2-x-2}{x^3-3x+2}=\dfrac{x^2.\left(x+2\right)-\left(x+2\right)}{x.\left(x^2-1\right)-2.\left(x-1\right)}\\ \\ \dfrac{\left(x+2\right).\left(x^2-1\right)}{x.\left(x+1\right).\left(x-1\right)-2.\left(x-1\right)}\\ =\dfrac{\left(x+2\right).\left(x+1\right).\left(x-1\right)}{\left(x-1\right).\left[\left(x+1\right).x-2\right]}=\dfrac{\left(x+2\right).\left(x+1\right)}{\left(x+1\right).x-2}\)

1: \(\left(x-y\right)^3+\left(x+y\right)^3-6xy^2\)

\(=x^3-3x^2y+3xy^2-y^3+x^3+3x^2y+3xy^3+y^3-6xy^2\)

\(=2x^3\)

2: \(8x^3-36x^2y+54xy^2-28y^3\)

\(=8x^3-36x^2y+54xy^2-27y^3-y^3\)

\(=\left(2x-3y\right)^3-y^3\)

3: \(x^3-3x^2+3x-2\)

\(=x^3-3x^2+3x-1-1\)

\(=\left(x-1\right)^3-1\)

28 tháng 10 2021

Bài 1:

\(1,Sửa:x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ 2,=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\\ 3,=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\\ 4,=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)

Bài 2:

\(1,=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\\ 2,=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\\ 3,=3\left(x^3-1\right)=3\left(x-1\right)\left(x^2+x+1\right)\)

Bài 3:

\(a,=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y^2\right]=5\left(x-y+1\right)\left(x+y+1\right)\\ b,=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-4y^2\right]\\ =3x\left(x-2y-1\right)\left(x+2y-1\right)\\ c,=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\\ =\left(a+b\right)\left(a^2b-ab^2+a+b\right)\\ d,=2x\left(x^2-y^2-4x+4\right)=2x\left[\left(x-2\right)^2-y^2\right]\\ =2x\left(x-y-2\right)\left(x+y-2\right)\)