K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

1.x2-3=x2-(√3)2=(x-√3)(x+√3)

2.\(5x^2-7y^2=\left(\sqrt{5}x\right)^2-\left(\sqrt{7}x\right)^2=\left(\sqrt{5}x-\sqrt{7}x\right)\left(\sqrt{5}x+\sqrt{7}x\right)\)

3.x2-2xy+y2-z2+2zt-t2=(x2-2xy+y2)-(z2-2zt+t2)

=(x-y)2-(z-t)2=(x-y-z+t)(x-y+z-t)

4. x3-3x2+3x-1-y3 =(x3-3x2.1+3x.12-13)-y3=(x-1)3-y3

=(x-1-y)[(x-1)2+(x-1)y+y2]

=(x-y-1)(x2-2x+1+xy-y+y2)

1 tháng 8 2018

đề

18 tháng 2 2021

 a) 3x2 – 7x + 2

\(=3x^2-6x-x+2\)

\(=\left(3x^2-6x\right)-\left(x-2\right)\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

 b) a(x2 + 1) – x(a2 + 1)

\(=ax^2+a-\left(a^2x+x\right)\)

\(=a\left(x^2+1\right)-x\left(a^2+1\right)\)

.......?

 

 

 

 

a) Ta có: \(3x^2-7x+2\)

\(=3x^2-6x-x+2\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

b) Ta có: \(a\left(x^2+1\right)-x\left(a^2+1\right)\)

\(=x^2a+a-a^2x-x\)

\(=\left(x^2a-a^2x\right)+\left(a-x\right)\)

\(=xa\left(x-a\right)-\left(x-a\right)\)

\(=\left(x-a\right)\left(xa-1\right)\)

c) Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)

\(=\left(x^2+7x\right)^2+16\left(x^2+7x\right)+6\left(x^2+7x\right)+96\)

\(=\left(x^2+7x\right)\left(x^2+7x+16\right)+6\left(x^2+7x+16\right)\)

\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)

\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)

d) Ta có: \(\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)

\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)

\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+105+15\)

\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+120\)

\(=\left(a^2+8a\right)^2+12\left(a^2+8a\right)+10\left(a^2+8a\right)+120\)

\(=\left(a^2+8a\right)\left(a^2+8a+12\right)+10\left(a^2+8a+12\right)\)

\(=\left(a^2+8a+12\right)\left(a^2+8a+10\right)\)

\(=\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)

1a) 5x - 5y + 3x (x - y)

= (5x - 5y) + 3x (x - y)

= 5 (x - y) + 3x (x - y)

= (5 + 3x) (x - y)

b) x2 + 2xy + y2 - 4

= (x2 + 2xy + y2) - 22

= (x + y)2 - 22

= [(x + y) + 2] [(x + y) - 2]

= (x + y + 2) (x + y - 2)

#Học tốt!!!

~NTTH~
 

7 tháng 7 2015

 ( 3x+2). (3x-2)+(x-3)2-10x    

=9x2-4+x2-6x+9-10x

=9x2-4+x2-6x+9

=10x-16x+5

(2x+y)2+ (x-2y)2-5. (x+y).(x-y)

=4x2+4xy+y2+x2-4xy+4y2-5.(x2-y2)

=4x2+4xy+y2+x2-4xy+4y2-5x2+5y2

=10y2

(3x-5)2- x.(3x-5)

=9x2-30x+25-3x2+15

=6x2-30x+40

7 tháng 7 2015

mjk làm ruj đó đúng mjk đi

24 tháng 11 2021

a) 3x^4 - 12x^2 = 3x^2.(x^2 - 4) = 3x^2.(x - 2)(x + 2)

b) x^2 - 2xy + 3x - 6y

= x(x - 2y) + 3(x - 2y)

= (x - 2y)(x + 3) 

24 tháng 11 2021

a) 3x^4 - 12x^2

= 3x^2.x^2- 3.4x^2

= x^2-4

b) x ^2 - 2xy + 3x - 6y

=(x^2-2xy) +(3x-6y)

=x.(x-2y)+3(x-2y)

=(x-2y).(x+3)

2 tháng 8 2018

1.x2-y2+2x+1=(x2+2x+1)-y2=(x+1)2-y2=(x+1-y)(x+1+y)

2.(x2+9)2-36x2=(x2+9)2-(6x)2=(x2+9-6x)(x2+9+6x)=(x-3)2(x+3)2

3.\(8x^3+\dfrac{1}{27}=\left(2x\right)^3+\left(\dfrac{1}{3}\right)^3\\ =\left(2x+\dfrac{1}{3}\right)\text{[}\left(2x\right)^2-2x.\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2\text{]}\\ =\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)\)4.x3-8y3=x3-(2y)3=(x-2y)(x2+2xy+4y2)

25 tháng 12 2021

\(a,5\left(x-y\right)-3x\left(y-x\right)=5\left(x-y\right)+3x\left(x-y\right)=\left(5+3x\right)\left(x-y\right)\\ b,x^2-4xy+4y^2=\left(x-2y\right)^2\\ c,\left(x+1\right)^2+x\left(5-x\right)=0\\ \Rightarrow x^2+2x+1+5x-x^2=0\\ \Rightarrow7x+1=0\\ \Rightarrow7x=-1\\ \Rightarrow x=-\dfrac{1}{7}\)

25 tháng 12 2021

a: =(x-y)(5+3x)

c: \(\Leftrightarrow x^2-2x+1+5x-x^2=0\)

hay x=-1/3

29 tháng 6 2023

1, \(x^2+2xy+y^2=\left(x+y\right)^2\)

2, \(4x^2+12x+9=\left(2x\right)^2+2\cdot3\cdot2x+3^2=\left(2x+3\right)^2\)

3, \(x^2+5x+\dfrac{25}{4}=x^2+2\cdot\dfrac{5}{2}\cdot x+\left(\dfrac{5}{2}\right)^2=\left(x+\dfrac{5}{2}\right)^2\)

4, \(16x^2-8x+1=\left(4x\right)^2-2\cdot4x\cdot1+1^2=\left(4x-1\right)^2\)

5, \(x^2+x+\dfrac{1}{4}=x^2+2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)

1: =(x+y)^2

2: =(2x+3)^2

3: =(x+5/2)^2

4: =(4x-1)^2

5: =(x+1/2)^2

6: =(x-3/2)^2

7: =(x+1)^3

8: =(1/2x+1)^2

9: =(3y-1/3)^3

10: =(2x+y)^3