\(^2\)+9x+20

b, x

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(x^2+9x+20\)

\(=x^2+4x+5x+20\)

\(=x\left(x+4\right)+5\left(x+4\right)\)

\(=\left(x+4\right)\left(x+5\right)\)

b) Ta có: \(x^2+x-12\)

\(=x^2+4x-3x-12\)

\(=x\left(x+4\right)-3\left(x+4\right)\)

\(=\left(x+4\right)\left(x-3\right)\)

c) Ta có: \(6x^2-11x-16\)

\(=6\left(x^2-\frac{11}{6}x-\frac{16}{6}\right)\)

\(=6\left(x^2-2\cdot x\cdot\frac{11}{12}+\frac{121}{144}-\frac{505}{144}\right)\)

\(=6\left[\left(x-\frac{11}{12}\right)^2-\frac{505}{144}\right]\)

\(=6\left(x-\frac{11+\sqrt{505}}{12}\right)\left(x-\frac{11-\sqrt{505}}{12}\right)\)

d) Ta có: \(4x^2-8x-5\)

\(=4x^2-10x+2x-5\)

\(=2x\left(2x-5\right)+\left(2x-5\right)\)

\(=\left(2x-5\right)\left(2x+1\right)\)

e) Ta có: \(x^3-6x^2-x+30\)

\(=x^3+2x^2-8x^2-16x+15x+30\)

\(=x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-8x+15\right)\)

\(=\left(x+2\right)\left(x^2-3x-5x+15\right)\)

\(=\left(x+2\right)\left[x\left(x-3\right)-5\left(x-3\right)\right]\)

\(=\left(x+2\right)\left(x-3\right)\left(x-5\right)\)

g) Ta có: \(x^3+9x^2+23x+15\)

\(=x^3+x^2+8x^2+8x+15x+15\)

\(=x^2\left(x+1\right)+8x\left(x+1\right)+15\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+8x+15\right)\)

\(=\left(x+1\right)\left(x^2+3x+5x+15\right)\)

\(=\left(x+1\right)\left[x\left(x+3\right)+5\left(x+3\right)\right]\)

\(=\left(x+1\right)\left(x+3\right)\left(x+5\right)\)

h) Ta có: \(2x^4-x^3-9x^2+13x\)

\(=x\left(2x^3-x^2-9x+13\right)\)

i) Ta có: \(x^4+2x^3-16x^2-2x+15\)

\(=x^4-3x^3+5x^3-15x^2-x^2+3x-5x+15\)

\(=x^3\left(x-3\right)+5x^2\left(x-3\right)-x\left(x-3\right)-5\left(x-3\right)\)

\(=\left(x-3\right)\left(x^3+5x^2-x-5\right)\)

\(=\left(x-3\right)\left[x^2\left(x+5\right)-\left(x+5\right)\right]\)

\(=\left(x-3\right)\left(x+5\right)\left(x^2-1\right)\)

\(=\left(x-3\right)\left(x+5\right)\left(x-1\right)\left(x+1\right)\)

24 tháng 9 2017

Dài dữ trời :V Về sau gửi từng bài một thôi, nhìn hoa mắt quá @@

B1: Phân tích thành nhân tử:

a) \(6x^2+9x=3x\left(2x+3\right)\)

b) \(4x^2+8x=4x\left(x+2\right)\)

c) \(5x^2+10x=5x\left(x+2\right)\)

d) \(2x^2-8x=2x\left(x-4\right)\)

e) \(5x-15y=5\left(x-3y\right)\)

f) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\)

g) \(x^2-2x+1-4y^2=\left(x-1\right)^2-4y^2\)

\(=\left(x-1-2y\right)\left(x-1+2y\right)\)

h) \(x^2-100=\left(x-10\right)\left(x+10\right)\)

i) \(9x^2-18x+9=\left(3x-3\right)^2\)

k) \(x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)

l) \(x^2+6xy^2+9y^4=\left(x+3y\right)^2\)

m) \(4xy-4x^2-y^2=-\left(4x^2-4xy+y^2\right)\)

\(=-\left(2x-y\right)^2\)

n) \(\left(x-15\right)^2-16=\left(x-15-16\right)\left(x-15+16\right)\)

\(=\left(x-31\right)\left(x+1\right)\)

o) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3+x\right)\)

\(=\left(2+x\right)\left(8+x\right)\)

p) \(\left(7x-4\right)^2-\left(2x+1\right)^2\)

\(=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)\)

\(=\left(5x-5\right)\left(9x-3\right)\)

24 tháng 9 2017

Bài 1 :

a ) \(6x^2+9x=3x\left(x+3\right)\)

b ) \(4x^2+8x=4x\left(x+2\right)\)

c ) \(5x^2+10x=5x\left(x+2\right)\)

d ) \(2x^2-8x=2x\left(x-4\right)\)

e ) \(5x-15y=5\left(x-3y\right)\)

f ) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)

g ) \(x^2-2x+1-4y^2=\left(x-1\right)^2-\left(2y\right)^2=\left(x-1-2y\right)\left(x-1+2y\right)\)

h ) \(x^2-100=x^2-10^2=\left(x-10\right)\left(x+10\right)\)

i ) \(9x^2-18x+9=\left(3x-3\right)^2\)

k ) \(x^3-8=\left(x-2\right)\left(x^2+2x+2^2\right)\)

l ) \(x^2+6xy^2+9y^4=\left(x+3y^2\right)^2\)

m ) \(4xy-4x^2-y^2=-\left(2x-y\right)^2\)

n ) \(\left(x-15\right)^2=x^2-30x+15^2\)

o ) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3-x\right)=\left(2+x\right)\left(8-x\right)\)

p ) \(\left(7x-4\right)^2-\left(2x+1\right)^2=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)=\left(5x-5\right)\left(9x-3\right)\)

Bài 2 :

a ) \(3x^3-6x^2+3x^2y-6xy=3x\left(x^2-2x+xy-2y\right)\)

b ) \(x^2-2x+xy-2y=x\left(x-2\right)+y\left(x-2\right)=\left(x-2\right)\left(x+y\right)\)

c ) \(2x+x^2-2y-2xy=......................\)

d ) \(x^2-2xy+y^2-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)

e ) \(x^2+y^2-2xy-4=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x-y+2\right)\)

f )\(2xy-x^2-y^2+9=-\left(x-y\right)^2+9=3^2-\left(x-y\right)^2=\left(3-x+y\right)\left(3+x-y\right)\)

7 tháng 10 2018

a)\(a^4+a^2+1=\left(a^2\right)^2+2a^2.1+1^2-a^2=\left(a^2+1\right)^2-a^2=\left(a^2+1+a\right)\left(a^2+1-a\right)\)

b)\(a^4+a^2-2=a^4-a^2+2a^2-2=a^2\left(a^2-1\right)+2\left(a^2-1\right)=\left(a^2+2\right)\left(a^2-1\right)\)

c)\(x^4+4x^2-5=x^4-x^2+5x^2-5=x^2\left(x^2-1\right)+5\left(x^2-1\right)=\left(x^2+5\right)\left(x+1\right)\left(x-1\right)\)

d)\(\left(x+2\right)\left(x^2-2x-6\right)=x^3-2x^2-6x+2x^2-4x-12=x^3-10x-12\)

\(\Rightarrow x^3-10x-12=\left(x+2\right)\left(x^2-2x-6\right)\)

e)\(6x^3-17x^2+14x-3\)

Ta có: \(\left(ax^2+bx+c\right)\left(dx+e\right)\)

\(=adx^3+aex^2+bdx^2+bex+cdx+ce\)

\(=adx^3+\left(ae+bd\right)x^2+\left(be+cd\right)x+ce\)

Do đó:\(\left\{{}\begin{matrix}ad=6\\ae+bd=-17\\be+cd=14\\ce=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3;b=-4\\c=1;d=2\\e=-3\end{matrix}\right.\)

Suy ra: \(6x^3-17x^2+14x-3=\left(3x^2-4x+1\right)\left(2x-3\right)\)

7 tháng 10 2018

h)\(x^4-34x^2+225=x^4-15x^2-15x^2+225-4x^2=x^2\left(x^2-15\right)-15\left(x^2-15\right)-\left(2x\right)^2=\left(x^2-15\right)^2-\left(2x\right)^2=\left(x^2+2x-15\right)\left(x^2-2x-15\right)=\left(x^2-3x+5x-15\right)\left(x^2+5x-3x-15\right)=\left[\left(x-3\right)\left(x+5\right)\right]^2\)

8 tháng 7 2016

b, \(\left(x^2+x\right)^2+4x^2+4x-12=x^4+2x^3+x^2+4x^2+4x-12\)

                                                         \(=x^4+2x^3+5x^2+4x-12\)

                                                         \(=\left(x^4-x^3\right)+\left(3x^3-3x^2\right)+\left(8x^2-8x\right)+\left(12x-12\right)\)

                                                         \(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)

                                                          \(=\left(x^3+3x^2+8x+12\right)\left(x-1\right)\)

                                                          \(=\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(6x+12\right)\right]\left(x-1\right)\)

                                                           \(=\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\left(x-1\right)\)

                                                            \(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)

c,        \(x^3+3x^2-4=\left(x^3+2x^2\right)+\left(x^2+2x\right)-\left(2x+4\right)\)

                                    \(=x^2\left(x+2\right)+x\left(x+2\right)-2\left(x+2\right)\)

                                     = \(\left(x^2+x-2\right)\left(x+2\right)\)

9 tháng 7 2016

a)\(x^5+x^4+1=x^5-\left(-x^3+x^3\right)+x^4+\left(x^2-x^2\right)+\left(x-x\right)+1\)

\(=x^5-x^3+x^2+x^4-x^2+x+x^3-x+1\)

\(=x^2\left(x^3-x+1\right)+x\left(x^3-x+1\right)+\left(x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)

b,c có ng lm rồi

d)\(2x^4-3x^3-7x^2+6x+8\)

Ta thấy x=-1 là nghiệm của đa thức 

=>đa thức có 1 hạng tử là x+1

\(\Rightarrow\left(x+1\right)\left(2x^3-5x^2-2x+8\right)\)

\(\Rightarrow\left(x+1\right)\left[2x^3-x^2-4x-4x^2+2x+8\right]\)

\(\Rightarrow\left(x+1\right)\left[x\left(2x^2-x-4\right)-2\left(2x^2-x-4\right)\right]\)

\(\Rightarrow\left(x+1\right)\left(x-2\right)\left(2x^2-x-4\right)\)

phần còn lại bạn tự lo nhé

a: \(A=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left(x-2\right)^2+7< =7\)

Dấu '=' xảy ra khi x=2

b: \(B=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\)

Dấu '=' xảy ra khi x=1/2

c: \(C=-2\left(x^2-x+\dfrac{5}{2}\right)\)

\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{9}{4}\right)\)

\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}< =-\dfrac{9}{2}\)

Dấu '=' xảy ra khi x=1/2

e: \(E=-\left(x^2+6x+9+1\right)=-\left(x+3\right)^2-1< =-1\)

Dấu = xảy ra khi x=-3

23 tháng 8 2020

a) -x2 + 2x - 1

= -( x2 - 2x + 1 )

= -( x - 1 )2

b) 12y - 36 - y2

= -( y2 - 12y + 36 )

= -( y - 6 )2

c) -x3 + 9x2 - 27x + 27

= -( x3 - 9x2 + 27x - 27 )

= -( x - 3 )3

d) x3 - 6x2 + 9x 

= x( x2 - 6x + 9 )

= x( x - 3 )2

e) a3b - ab3 

= ab( a2 - b2 )

= ab( a - b )( a + b )

f) a2 + 2a + 1 - b2

= a2 + ab + a - ab - b2 - b + a + b + 1

= a( a + b + 1 ) - b( a + b + 1 ) + 1( a + b + 1 )

= ( a - b + 1 )( a + b + 1 )

23 tháng 8 2020

a)\(-x^2+2x-1\) 

\(=-\left(x^2-2x+1\right)\)  

\(=-\left(x-1\right)^2\) 

b) \(12y-36-y^2\)    

\(=-\left(y^2-12y+36\right)\)    

\(=-\left(y^2-2\cdot1\cdot6+6^2\right)\)      

\(=-\left(y-6\right)^2\)        

c) \(-x^3+9x^2-27x+27\)      

\(=-x^3+3x^2+6x^2-18x-9x+27\)      

\(=-x^2\left(x-3\right)+6x\left(x-3\right)-9\left(x-3\right)\)     

\(=\left(x-3\right)\left(-x^2+6x-9\right)\)   

\(=\left(x-3\right)\cdot-\left(x^2-6x+9\right)\)   

\(=\left(x-3\right)\cdot-\left(x^2-2\cdot x\cdot3+3^2\right)\) 

\(=-\left(x-3\right)\left(x-3\right)^2\)                                    

\(=\left(x-3\right)^3\)      

d) \(x^3-6x^2+9\)     

\(=x\left(x^2-6x+9\right)\)    

\(=x\left(x-3\right)^2\)    

e) \(a^3b-ab^3\)     

\(=ab\left(a^2-b^2\right)\)  

\(=ab\left(a-b\right)\left(a+b\right)\)     

f) \(a^2+2a+1-b^2\)    

\(=a^2+2\cdot a\cdot1+1^2-b^2\)    

\(=\left(a+1\right)^2-b^2\)      

\(=\left(a+1-b\right)\left(a+1+b\right)\)

8 tháng 10 2016

đề bài ???

8 tháng 10 2016

c)4x^4x^− x^− x = x*(4x^3 + 4x^2 - x -1)

21 tháng 10 2018

a) \(x^2-6x+9-9y^2=x^2-2\cdot3+3^2-\left(3y\right)^2=\left(x-3\right)^2-\left(3y\right)^2=\left(x-3-3y\right)\cdot\left(x-3+3y\right)\)

21 tháng 10 2018

b) \(x^3-3x^2+2x-1+2\cdot\left(x^2-x\right)=\left(x-1\right)^3+2x\cdot\left(x-1\right)=\left(x-1\right)\cdot\left[\left(x-1\right)^2+2x\right]\)

5 tháng 7 2017

a, = (x+3y)^2

b, = (x-1/2)(x+1/2)

c, = (x-5)^2

d, = (2x+3y)(4x^2-6xy+9y^2)

e, = (x^3-y)^2

f,= (x+3y)^3

13 tháng 10 2019

\(e,-5x+x^2-14\)

\(=x^2+2x-7x-14\)

\(=x\left(x+2\right)-7\left(x+2\right)\)

\(=\left(x+2\right)\left(x-7\right)\)

\(f,x^3+8+6x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+2x+4\right)+6x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+8x+4\right)\)

\(g,15x^2-7xy-2y^2\)

\(=15x^2+3xy-10xy-2y^2\)

\(=3\left(5x+y\right)-2y\left(5x+y\right)\)

\(=\left(5x+y\right)\left(3-2y\right)\)

\(h,3x^2-16x+5\)

\(=3x^2-x-15x+5\)

\(=x\left(3x-1\right)+5\left(3x-1\right)\)

\(=\left(3x-1\right)\left(x+5\right)\)

13 tháng 10 2019

\(a,x^3+2x^2y+xy^2=x\left(x^2+2xy+y^2\right)\)

\(=x\left(x+y\right)^2\)

\(b,4x^2-9y^2+4x-6y\)

\(=4x^2+4x+1-\left(9y^2+6y+1\right)\)

\(=\left(2x+1\right)^2-\left(3y+1\right)^2\)

\(=\left(2x-3y\right)\left(2x+3y+2\right)\)

\(c,-x^2+5x+2xy-5y-y^2\)

\(=-\left(x^2-2xy+y^2\right)+5\left(x-y\right)\)

\(=-\left(x-y\right)^2+5\left(x-y\right)\)

\(=\left(x-y\right)\left(y-x+5\right)\)

\(d,x^2+4x-12\)

\(=x^2-2x+6x-12\)

\(=x\left(x-2\right)+6\left(x-2\right)\)

\(=\left(x-2\right)\left(x+6\right)\)