Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
a) x3 + 127127 = x3 + (1313)3 = (x + 1313)(x2 – x . 1313+ (1313)2)
=(x + 1313)(x2 – 1313x + 1919)
b) (a + b)3 – (a - b)3
= [(a + b) – (a – b)][(a + b)2 + (a + b) . (a – b) + (a – b)2]
= (a + b – a + b)(a2 + 2ab + b2 + a2 – b2 + a2 – 2ab + b2)
= 2b . (3a3 + b2)
c) (a + b)3 + (a – b)3 = [(a + b) + (a – b)][(a + b)2 – (a + b)(a – b) + (a – b)2]
= (a + b + a – b)(a2 + 2ab + b2 – a2 +b2 + a2 – 2ab + b2]
= 2a . (a2 + 3b2)
d) 8x3 + 12x2y + 6xy2 + y3 = (2x)3 + 3 . (2x)2 . y +3 . 2x . y + y3 = (2x + y)3
e) - x3 + 9x2 – 27x + 27 = 27 – 27x + 9x2 – x3 = 33 – 3 . 32 . x + 3 . 3 . x2 – x3 = (3 – x)3
WOW !!! Tốc độ đánh máy của bạn thần thánh thật đấy......2 phút mà nhiều quá trời luôn
a. 2x2-xy
= x(2x-y)
b. x2-xy-x+y
= (x2-xy)-(x+y)
=x(x-y)-(x-y)
=(x-y)(x-1)
\(\frac{2}{5}x\left(y-1\right)-\frac{2}{5}y\left(y-1\right)\)
\(=\left(y-1\right)\left[\left(\frac{2}{5}x-\frac{2}{5}y\right)\right]\)
\(=\left(y-1\right)\frac{2}{5}\left(x-y\right)\)
a, = (x+3y)^2
b, = (x-1/2)(x+1/2)
c, = (x-5)^2
d, = (2x+3y)(4x^2-6xy+9y^2)
e, = (x^3-y)^2
f,= (x+3y)^3
\(x^2-y^2+6x+9=\left(x+3\right)^2-y^2=\left(x+3+y\right)\left(x+3-y\right)\)
\(x^3+3x^2-9x-27=\left(x-3\right)\left(x^2+3x+9\right)+3x\left(x-3\right)=\left(x-3\right)\left(x^2+6x+9\right)=\left(x-3\right)\left(x+3\right)^2\)
b) 6x - 9 - x2
= - (x2 - 6x + 9 )
= - ( x2 - 2.x.3 + 32 )
= - ( x - 3 )2
c) x2 - 16
= x2 - 42
= ( x - 4 )( x + 4)
d) 9x2 - 25
= ( 3x )2 - 52
= ( 3x - 5 )( 3x + 5 )
e ) x4 - y4
= ( x2)2 - ( y2 )2
= ( x2 - y2 )( x2 + y2 )
f) x6 -y6
= ( x3 )2 - ( y3)2
=( x3 - y3 )( x3 + y3 )
g) 8x3 - \(\dfrac{1}{27}\)
= ( 2x )3 - ( \(\dfrac{1}{3}\))3
= ( 2x - \(\dfrac{1}{3}\) ) ( 2x + \(\dfrac{2}{3}\)x + \(\dfrac{1}{3}\))
a) -x2 + 2x - 1
= -( x2 - 2x + 1 )
= -( x - 1 )2
b) 12y - 36 - y2
= -( y2 - 12y + 36 )
= -( y - 6 )2
c) -x3 + 9x2 - 27x + 27
= -( x3 - 9x2 + 27x - 27 )
= -( x - 3 )3
d) x3 - 6x2 + 9x
= x( x2 - 6x + 9 )
= x( x - 3 )2
e) a3b - ab3
= ab( a2 - b2 )
= ab( a - b )( a + b )
f) a2 + 2a + 1 - b2
= a2 + ab + a - ab - b2 - b + a + b + 1
= a( a + b + 1 ) - b( a + b + 1 ) + 1( a + b + 1 )
= ( a - b + 1 )( a + b + 1 )
a)\(-x^2+2x-1\)
\(=-\left(x^2-2x+1\right)\)
\(=-\left(x-1\right)^2\)
b) \(12y-36-y^2\)
\(=-\left(y^2-12y+36\right)\)
\(=-\left(y^2-2\cdot1\cdot6+6^2\right)\)
\(=-\left(y-6\right)^2\)
c) \(-x^3+9x^2-27x+27\)
\(=-x^3+3x^2+6x^2-18x-9x+27\)
\(=-x^2\left(x-3\right)+6x\left(x-3\right)-9\left(x-3\right)\)
\(=\left(x-3\right)\left(-x^2+6x-9\right)\)
\(=\left(x-3\right)\cdot-\left(x^2-6x+9\right)\)
\(=\left(x-3\right)\cdot-\left(x^2-2\cdot x\cdot3+3^2\right)\)
\(=-\left(x-3\right)\left(x-3\right)^2\)
\(=\left(x-3\right)^3\)
d) \(x^3-6x^2+9\)
\(=x\left(x^2-6x+9\right)\)
\(=x\left(x-3\right)^2\)
e) \(a^3b-ab^3\)
\(=ab\left(a^2-b^2\right)\)
\(=ab\left(a-b\right)\left(a+b\right)\)
f) \(a^2+2a+1-b^2\)
\(=a^2+2\cdot a\cdot1+1^2-b^2\)
\(=\left(a+1\right)^2-b^2\)
\(=\left(a+1-b\right)\left(a+1+b\right)\)