K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

\(A=\left(x+3y-5\right)^2-6xy+27\)

\(=x^2+9y^2+25+6xy-30y-10x-6xy+27\)

\(=x^2-10x+25+9y^2-30y+25+2\)

\(=\left(x-5\right)^2+\left(3y-5\right)^2+2\)

\(\left(x-5\right)^2\ge0\)

\(\left(3y-5\right)^2\ge0\)

\(\left(x-5\right)^2+\left(3y-5\right)^2+2\ge2\)

\(MinA=2\Leftrightarrow x=5;y=\frac{5}{3}\)

6 tháng 11 2016

\(A=\left(x+3y-5\right)^2-6xy+27\)

\(=x^2+9y^2+25+6xy-10x-30y-6xy+27\)

\(=\left(x^2-10x+25\right)+\left(9y^2-30y+25\right)+2\)

\(=\left(x-5\right)^2+\left(3y-5\right)^2+2\ge2\)

Dấu = khi \(\begin{cases}\left(x-5\right)^2=0\\\left(3y-5\right)^2=0\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}x=5\\y=\frac{5}{3}\end{cases}\)

Vậy MinA=2 khi \(\begin{cases}x=5\\y=\frac{5}{3}\end{cases}\)

6 tháng 9 2016

Trả lời đc câu b chưa bạn

6 tháng 9 2016

nếu rồi cho mình lời giải nha

8 tháng 10 2016

a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x^3+1\right)-\left(x^3-1\right)\)

\(=x^3+1-x^3+1\)

 \(=2\)

Biểu thức trên có giá trị bằng 2 với mọi x nên không phụ thuộc vào biến.

b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)

\(=\left(8x^3+27y^3\right)-\left(8x^3-27y^3\right)-27\left(2y^3-1\right)\)

\(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)

\(=27\)

Biểu thức trên có giá trị bằng 27 với mọi x nên không phụ thuộc vào biến.

c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)

\(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)

\(=-65\)

Biểu thức trên có giá trị bằng -65 với mọi x nên không phụ thuộc vào biến.

d) \(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)

\(=0\)

Biểu thức trên có giá trị bằng 0 với mọi x nên không phụ thuộc vào biến.

14 tháng 8 2018

\(A=\left(x+3y-5\right)^2-6xy+26\)

\(=x^2+9y^2+25+6xy-10x-30y-6xy+26\)

\(=x^2-10x+25+9y^2-30y+25+1\)

\(=\left(x-5\right)^2+\left(3y-5\right)^2+1\)

Vì :

\(\left(x-5\right)^2\ge0\forall x\)

\(\left(3y-5\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-5\right)^2+\left(3y-5\right)^2+1\ge1\)

Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-5\right)^2=0\\\left(3y-5\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{5}{3}\end{cases}}\)

Vậy \(A_{min}=1\) tại \(\hept{\begin{cases}x=5\\y=\frac{5}{3}\end{cases}}\)

8 tháng 11 2018

a) \(4x\left(x-5\right)+3y\left(x-5\right)\)

\(=\left(x-5\right)\left(4x+3y\right)\)

b) \(x^2-2x-4y^2-4y\)

\(=\left[x^2-\left(2y\right)^2\right]-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

c) \(x^2+x-y^2+y\)

\(=\left(x^2-y^2\right)+\left(x+y\right)\)

\(=\left(x-y\right)\left(x+y\right)+\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+1\right)\)

d) \(3x^2+3y^2-6xy-12\)

\(=3\left(x^2+y^2-2xy-4\right)\)

\(=3\left[\left(x-y\right)^2-2^2\right]\)

\(=3\left(x-y-2\right)\left(x-y+2\right)\)

8 tháng 11 2018

câu này nx

3x+3y-\(x^2\)-2xy-\(y^2\)

5 tháng 11 2019

a) \(\left(x+3y\right)\left(2x^2y-6xy^2\right)\)

\(=x\left(2x^2y-6xy^2\right)+3y\left(2x^2y-6xy^2\right)\)

\(=2x^3y-6x^2y^2+6x^2y^2-18xy^3\)

\(=2x^3y-18xy^3\)

b) \(\left(6x^5y^2-9x^4y^3+15x^3y^4\right):3x^3y^2\)

\(=6x^5y^2:3x^3y^2-9x^4y^3:3x^3y^2+15x^3y^4:3x^3y^2\)

\(=2x^2-3xy+5y^2\)

5 tháng 11 2019

c) \(\left(2x+3\right)^2+\left(2x+5\right)^2-2\left(2x+3\right)\left(2x+5\right)\)

\(=\left(2x+3-2x-5\right)^2\)

\(=\left(-2\right)^2=4\)

d) \(\left(y+3\right)^3-\left(3-y\right)^2-54y\)

\(=y^3+9y^2+27y+27-\left(x^2-6x+9\right)-54y\)

\(=y^3+9y^2-27y+27-x^2+6y-9\)

\(=y^3+9y^2-x^2-21y+18\)

NV
5 tháng 10 2020

\(P=\left(x+1\right)\left(x+5\right)\left(x-2\right)\left(x+8\right)\)

\(=\left(x^2+6x+5\right)\left(x^2+6x-16\right)\)

\(=\left(x^2+6x-16\right)^2+21\left(x^2+6x-16\right)\)

\(=\left(x^2+6x-16+\frac{21}{2}\right)^2-\frac{441}{4}\ge-\frac{441}{4}\)

\(P_{min}=-\frac{441}{4}\) khi \(x^2+6x-16+\frac{21}{2}=0\)

\(Q=\left(x^2+\frac{y^2}{4}+\frac{9}{4}+xy-3x-\frac{3}{2}y\right)+\frac{3}{4}\left(y^2-2y+1\right)+2017\)

\(Q=\left(x+\frac{y}{2}-\frac{3}{2}\right)^2+\frac{3}{4}\left(y-1\right)^2+2017\ge2017\)

\(Q_{min}=2017\) khi \(x=y=1\)

11 tháng 12 2019

\(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\)

\(=\left(2x+3y\right)\left(2x-3y\right)^2-\left(2x-3y\right)\left(2x+3y\right)^2\)

\(=\left(2x-3y\right)\left(2x+3y\right)\left(2x-3y-2x-3y\right)\)

\(=-\left(2x-3y\right)\left(2x+3y\right)\cdot6y\)

17 tháng 6 2018

Giải:

\(\left(3x^2y-\dfrac{1}{2}x^2+\dfrac{1}{5}xy\right)6xy^3\)

\(=3x^2y.6xy^3-\dfrac{1}{2}x^2.6xy^3+\dfrac{1}{5}xy.6xy^3\)

\(=18x^3y^4-3x^3y^3+\dfrac{6}{5}x^2y^4\)

Vậy ...