K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

a) \(\left|x+1,1\right|\ge0\Leftrightarrow-\left|x+1,1\right|\le0\Leftrightarrow1,5-\left|x+1,1\right|\le1,5\)

\(\Leftrightarrow A_{Max}=1,5\)

\("="\Leftrightarrow x=-1,1\)

b) \(\left|1,7-x\right|\ge0\Leftrightarrow-\left|1,7-x\right|\le0\Leftrightarrow-3,7-\left|1,7-x\right|\le-3,7\)

\(\Leftrightarrow B_{Max}=-3,7\)

\("="\Leftrightarrow x=1,7\)

11 tháng 7 2017

Bài 1:

a, \(A=3,7+\left|4,3-x\right|\ge3,7\)

Dấu " = " khi \(\left|4,3-x\right|=0\Rightarrow x=4,3\)

Vậy \(MIN_A=3,7\) khi x = 4,3

b, \(B=\left|3x+\dfrac{41}{5}\right|-14,2\ge-14,2\)

Dấu " = " khi \(\left|3x+\dfrac{41}{5}\right|=0\Rightarrow x=\dfrac{-41}{15}\)

Vậy \(MIN_B=-14,2\) khi \(x=\dfrac{-41}{15}\)

c, \(C=\left|4x-3y\right|+\left|5y+7,5\right|\ge17,5\)

( do \(\left|4x-3y\right|+\left|5y+7,5\right|\ge0\) )

Dấu " = " khi \(\left\{{}\begin{matrix}\left|4x-3y\right|=0\\\left|5y+7,5\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{8}\\y=-1,5\end{matrix}\right.\)

Vậy \(MIN_C=17,5\) khi \(\left\{{}\begin{matrix}x=\dfrac{-9}{8}\\y=-1,5\end{matrix}\right.\)

Bài 2:

a, \(A=5,5-\left|2x-1,5\right|\le5,5\)

Dấu " = " khi \(\left|2x-1,5\right|=0\Rightarrow x=0,75\)

Vậy \(MIN_A=5,5\) khi x = 0,75

b, c tương tự

21 tháng 9 2021

\(a,A=\left|3,4-x\right|+1,7\ge1,7\)

Dấu \("="\Leftrightarrow3,4-x=0\Leftrightarrow x=3,4\)

\(c,C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}4x-3=0\\5y+7,5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-\dfrac{3}{2}\end{matrix}\right.\)

13 tháng 3 2018

\(a)\) \(\left|x+2\right|=\left|-3x+1\right|\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+2=-3x+1\\x+2=3x-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x+3x=1-2\\3x-x=2+1\end{cases}}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}4x=-1\\2x=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\x=\frac{3}{2}\end{cases}}}\)

Vậy \(x=\frac{-1}{4}\) hoặc \(x=\frac{3}{2}\)

13 tháng 3 2018

\(a,\left|x+2\right|=\left|-3x+1\right|\)

\(\rightarrow\orbr{\begin{cases}x+2=-3x+1\\x+2=3x-1\end{cases}\rightarrow\orbr{\begin{cases}x+3x=1-2\\x-3x=-1-2\end{cases}}}\)

\(\rightarrow\orbr{\begin{cases}4x=-1\\-2x=-3\end{cases}\rightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\x=\frac{3}{2}\end{cases}}}\)

\(b,\left|x-1,5\right|-\left|3x+2\right|=0\)

\(\rightarrow\left|x-1,5\right|=\left|3x+2\right|\)

\(\rightarrow\orbr{\begin{cases}x-1,5=3x+2\\x-1,5=-3x+2\end{cases}\rightarrow\orbr{\begin{cases}x-3x=2+1,5\\x+3x=-2+1,5\end{cases}}}\)

\(\rightarrow\orbr{\begin{cases}-2x=3,5\\4x=-0,5\end{cases}\rightarrow\orbr{\begin{cases}x=\frac{-3,5}{2}\\x=\frac{-0,5}{4}\end{cases}}}\)

\(c,\left|-2+5x\right|=\left|-x^2-2\right|\)

\(\rightarrow\orbr{\begin{cases}-2+5x=-x^2-2\\-2+5x=-\left(-x^2-2\right)\end{cases}\rightarrow\orbr{\begin{cases}5x+x^2=-2+2\\-2+5x=x^2+2\end{cases}}}\)

\(\rightarrow\orbr{\begin{cases}5x+x^2=0\\x^2-5x+4=0\end{cases}\rightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2-4x-x+4=0\end{cases}}}\)

\(\rightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=0\\x+5=0\end{cases}\rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}}\\x\left(x-4\right)-\left(x-4\right)=0\end{cases}}\)

\(\rightarrow\left(x-4\right).\left(x-1\right)=0\)

\(\rightarrow\orbr{\begin{cases}x-4=0\\x-1=0\end{cases}\rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}}\)

11 tháng 8 2020

A=-x+2.5+x-1.7

A=0.8

B=-x+1.5+x-2/5

B=1.5-2/5

B=11/10hayB=1.1

a: \(B=\left|2-x\right|+1.5>=1.5\)

Dấu '=' xảy ra khi x=2

b: \(B=-5\left|1-4x\right|-1\le-1\)

Dấu '=' xảy ra khi x=1/4

g: \(C=x^2+\left|y-2\right|-5>=-5\)

Dấu '=' xảy ra khi x=0 và y=2