Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=1,5+\left|2-x\right|\)
Có: \(\left|2-x\right|\ge0\)
\(\Rightarrow1,5+\left|2-x\right|\ge1,5\)
Dấu = xảy ra khi: \(2-x=0\Rightarrow x=2\)
Vậy: \(Min_A=1,5\)tại \(x=2\)
Bài 1:a/ 1.6-Ix-0.2I=0
Có 2 trường hợp:
TH1: x-0.2=1.6
=> x=1.6+0.2=1.8
TH2: x-0.2=-1.6
=> x=-1.4
b/ Có 2 trường hợp:
TH1:x-1.5=0=>x=1.5
TH2: 2.5-x=0=> x=2.5
Bài 2: a/ Vì Ix-3.5I\(\ge0\)
=> Amax=0.5-0=0.5 khi x=3.5
b/ Vì -I1.4-xI \(\le0\)
Nên Bmax=0-2=-2 khi x=1.4
\(C=1,5-\left|x-1,1\right|\le1,5\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x-1,1\right|=0\)
\(\Leftrightarrow\)\(x=1,1\)
Vậy GTLN của \(C\) là \(1,5\) khi \(x=1,1\)
Chúc bạn học tốt ~
Vì \(\left|x-1,1\right|\ge0\forall x\in Q\)
\(\Rightarrow1,5-\left|x-1,1\right|\le1,5-0\)
\(\Rightarrow C\le1,5\)
Do đó \(C\)nhận được giá trị lớn nhất \(=1,5\)khi \(\left|x-1,1\right|=0\)
\(\Leftrightarrow x-1,1=0\Leftrightarrow x=1,1\)
Vậy \(Cmax=1,5\) khi \(x=1,1\)
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
\(A=\left|3,7-x\right|+2,5\ge2,5\)
\(MinA=2,5\Leftrightarrow3,7-x=0\Rightarrow x=3,7\)
\(\left|x+1,5\right|-4,5\ge-4,5\)
\(MinB=-4,5\Leftrightarrow x+1,5=0\Rightarrow x=-1,5\)
\(C=1,5-\left|x+1,1\right|\le1,5\)
\(MinC=1,5\Leftrightarrow x+1,1=0\Rightarrow x=-1,1\)
a: \(B=\left|2-x\right|+1.5>=1.5\)
Dấu '=' xảy ra khi x=2
b: \(B=-5\left|1-4x\right|-1\le-1\)
Dấu '=' xảy ra khi x=1/4
g: \(C=x^2+\left|y-2\right|-5>=-5\)
Dấu '=' xảy ra khi x=0 và y=2
a) \(\left|x+1,1\right|\ge0\Leftrightarrow-\left|x+1,1\right|\le0\Leftrightarrow1,5-\left|x+1,1\right|\le1,5\)
\(\Leftrightarrow A_{Max}=1,5\)
\("="\Leftrightarrow x=-1,1\)
b) \(\left|1,7-x\right|\ge0\Leftrightarrow-\left|1,7-x\right|\le0\Leftrightarrow-3,7-\left|1,7-x\right|\le-3,7\)
\(\Leftrightarrow B_{Max}=-3,7\)
\("="\Leftrightarrow x=1,7\)