K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2018

ta có : \(C^n_n+C^{n-1}_n+C^{n-2}_n=79\Leftrightarrow1+\dfrac{n!}{\left(n-1\right)!}+\dfrac{n!}{2\left(n-2\right)!}=79\)

\(\Leftrightarrow1+n+\dfrac{n\left(n-1\right)}{2}=79\Leftrightarrow n^2+n-39=0\) \(\Rightarrow∄n\in Z^+\)

\(\Rightarrow\) đề sai

20 tháng 8 2018

§3. Nhị thức Niu-tơn

NV
12 tháng 11 2019

Bài 1:

\(\left(x^{-\frac{1}{5}}+x^{\frac{1}{3}}\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(x^{-\frac{1}{5}}\right)^k\left(x^{\frac{1}{3}}\right)^{10-k}=\sum\limits^{10}_{k=0}C_{10}^kx^{\frac{10}{3}-\frac{8k}{15}}\)

Trong khai triển trên có 11 số hạng nên số hạng đứng giữa có \(k=6\)

\(\Rightarrow\) Số hạng đó là \(C_{10}^6x^{\frac{10}{3}-\frac{48}{15}}=C_{10}^6x^{\frac{2}{15}}\)

Bài 2:

\(\left(1+x^2\right)^n=a_0+a_1x^2+a_2x^4+...+a_nx^{2n}\)

Cho \(x=1\Rightarrow2^n=a_0+a_1+...+a_n=1024=2^{10}\)

\(\Rightarrow n=10\)

\(\left(1+x^2\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^kx^{2k}\)

Số hạng chứa \(x^{12}\Rightarrow2k=12\Rightarrow k=6\) có hệ số là \(C_{10}^6\)

Bài 3:

\(\left(x-\frac{1}{4}\right)^n=\sum\limits^n_{k=0}C_n^kx^k\left(-\frac{1}{4}\right)^{n-k}\)

Với \(k=n-2\Rightarrow\) hệ số là \(C_n^{n-2}\left(-\frac{1}{4}\right)^2=\frac{1}{16}C_n^2\)

\(\Rightarrow\frac{1}{16}C_n^2=31\Rightarrow C_n^2=496\Rightarrow n=32\)

NV
12 tháng 11 2019

Bài 4:

Xét khai triển:

\(\left(1+x\right)^n=C_n^0+xC_n^1+x^2C_n^2+...+x^nC_n^n\)

Cho \(x=2\) ta được:

\(\left(1+2\right)^n=C_n^0+2C_n^1+2^2C_n^2+...+2^nC_n^n\)

\(\Rightarrow S=3^n\)

Bài 5:

Xét khai triển:

\(\left(1+x\right)^n=C_n^0+xC_n^1+x^2C_n^2+...+x^{2k}C_n^{2k}+x^{2k+1}C_n^{2k+1}+...\)

Cho \(x=-1\) ta được:

\(0=C_n^0-C_n^1+C_n^2-C_n^3+...+C_n^{2k}-C_n^{2k+1}+...\)

\(\Rightarrow C_n^0+C_n^2+...+C_n^{2k}+...=C_n^1+C_n^3+...+C_n^{2k+1}+...\)

Bài 6:

\(\left(1-4x+x^2\right)^5=\sum\limits^5_{k=0}C_5^k\left(-4x+x^2\right)^k=\sum\limits^5_{k=0}\sum\limits^k_{i=0}C_5^kC_k^i\left(-4\right)^ix^{2k-i}\)

Ta có: \(\left\{{}\begin{matrix}2k-i=5\\0\le i\le k\le5\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(1;3\right);\left(3;4\right);\left(5;5\right)\)

Hệ số: \(\left(-4\right)^1.C_5^3C_3^1+\left(-4\right)^3C_5^4.C_4^3+\left(-4\right)^5C_5^5.C_5^5\)

18 tháng 7 2018

ta có : \(Q=C^1_n+2\dfrac{C_n^2}{C_n^1}+...+k\dfrac{C^k_n}{C_n^{k-1}}+...+n\dfrac{C^n_n}{C_n^{n-1}}\)

\(\Leftrightarrow Q=\dfrac{n!}{1!\left(n-1\right)!}+2\dfrac{1!\left(n-1\right)!}{2!\left(n-2\right)!}+...+k\dfrac{\left(k-1\right)!\left(n-k+1\right)!}{k!\left(n-k\right)!}+...+\dfrac{n\left(n-1\right)!1!}{n!}\)

\(\Leftrightarrow Q=n+\dfrac{2\left(n-1\right)}{2}+...+\dfrac{k\left(n-k+1\right)}{k}+...+\dfrac{n}{n}\)

\(\Leftrightarrow Q=n+\left(n-1\right)+...+\left(n-k+1\right)+...+1\)

\(\Leftrightarrow Q=n^2-\left(1+\left(1+1\right)+\left(1+2\right)+...+\left(n-1\right)\right)\)

NV
15 tháng 4 2020

\(lim\left(u_n\right)=lim\left(\frac{n}{n^2+1}\right)=lim\left(\frac{\frac{1}{n}}{1+\frac{1}{n^2}}\right)=\frac{0}{1}=0\)

b/

\(-1\le cos\frac{\pi}{n}\le1\Rightarrow-\frac{n}{n^2+1}\le v_n\le\frac{n}{n^2+1}\)

\(lim\left(-\frac{n}{n^2+1}\right)=lim\left(\frac{n}{n^2+1}\right)=0\)

\(\Rightarrow lim\left(v_n\right)=0\)

1, phương trình 2sin^2x-5sinxcosx-cos^2x=-2 tương đương vs pt nào sau đây A. 3cos2x-5sin2x=5 B.3cos2x+5sin2x=-5 C. 3cos2x-5sin2x=-5 D. 3cos2x+5sin2x=5 2, Phương trình 2m cos(\(\frac{9\pi}{2}\)-x)+(3m-2)sin(5\(\pi\)-x)+4m-3=0 có đúng 1 nghiệm x\(\in\)[-\(\pi\)/6;5pi/6] 3, Để phương trình 2\(\sqrt{3}\) cos^2x+6sinxcosx=m+\(\sqrt{3}\) có 2 nghiệm trong khỏng (0;pi)thì giá trị của m là 4, Tìm tất cả giá trị của...
Đọc tiếp

1, phương trình 2sin^2x-5sinxcosx-cos^2x=-2 tương đương vs pt nào sau đây

A. 3cos2x-5sin2x=5 B.3cos2x+5sin2x=-5 C. 3cos2x-5sin2x=-5 D. 3cos2x+5sin2x=5

2, Phương trình 2m cos(\(\frac{9\pi}{2}\)-x)+(3m-2)sin(5\(\pi\)-x)+4m-3=0 có đúng 1 nghiệm x\(\in\)[-\(\pi\)/6;5pi/6]

3, Để phương trình 2\(\sqrt{3}\) cos^2x+6sinxcosx=m+\(\sqrt{3}\) có 2 nghiệm trong khỏng (0;pi)thì giá trị của m là

4, Tìm tất cả giá trị của tham số m để phương trình sin^2x+2(m+1)sinx-3m(m-2)=0 có nghiệm

5, Số nghiệm thuộc (0;pi) của phương trình sinx+\(\sqrt{1+cos^2x}\)=2(cos\(^2\)3x+1) là

6, Tìm m để phương trình (cosx+1)(cos2x-mcosx)=msin^2x có đúng 2 nghiệm x\(\in\)[0;2pi/3]

7, gpt \(\sqrt{3}\) tan^2x-2tanx-căn3=0

8, Tìm giá trị m để phương trình 5sinx-m=tan^2x(sinx-1)có đúng 3 nghiệm thuộc (-pi;pi/2)

9, Có bao nhiêu giá trị nguyên của m để pt cos2x+sinx+m=0 có nghiệm x\(\in\) [-pi/6;pi/4]

10, tìm GTNN và GTLN của

a, y=4\(\sqrt{sinx+3}\) -1 b, y=\(\frac{12}{7-4sinx}\) trên đoạn[-pi/6;5pi/6] c, y=2cos^2x-sin2x+5

d, y=sinx+cos2x trên đoạn [0;pi]

11, Tìm số nghiệm của phương trình sin(cosx)=0 trên đoạn x[o;2pi]

12, Tính tổng các nghiệm của phương trình cos\(^2\) x-sin2x=\(\sqrt{2}\) +cos\(^2\) (\(\frac{\pi}{2}\) +x) trên khoảng(0;2pi)

13, nghiệm của pt \(\frac{sin2x+2cosx-sinx-1}{tanx+\sqrt{3}}\)=0 được biểu diễn bởi mấy điểm trên đường tròn lượng giác

14, giải pt cotx-tanx=\(\frac{2cos4x}{sin2x}\)

15, tìm m để pt (sinx-1)(cos^2x -cosx+m)=0 có đúng 5 nghiệm thuộc đoạn [0;2pi]

0
NV
18 tháng 9 2020

\(u_3=u_2^2-u_2+2=4\)

\(S_1=1=\left(2-1\right)^2=\left(u_2-1\right)^2\)

\(S_2=2.5-1=9=\left(4-1\right)^2=\left(u_3-1\right)^2\)

Dự đoán \(S_n=\left(u_{n+1}-1\right)^2\)

Ta sẽ chứng minh bằng quy nạp:

- Với \(n=1;2\) đúng (đã kiểm chứng bên trên với \(S_1;S_2\))

- Giả sử đẳng thức đúng với \(n=k\)

Hay \(S_k=\left(u_1^2+1\right)\left(u_2^2+1\right)...\left(u_k^2+1\right)-1=\left(u_{k+1}-1\right)^2\)

Ta cần chứng minh:

\(S_{k+1}=\left(u_1^2+1\right)\left(u_2^2+1\right)...\left(u_k^2+1\right)\left(u_{k+1}^2+1\right)-1=\left(u_{k+2}-1\right)^2\)

Thật vậy:

\(S_{k+1}=\left[\left(u_{k+1}-1\right)^2+1\right]\left(u_{k+1}^2+1\right)-1\)

\(=\left(u_{k+1}^2-2u_{k+1}+2\right)\left(u_{k+1}^2+1\right)-1\)

\(=\left(u_{k+2}-u_{k+1}\right)\left(u_{k+2}+u_{k+1}-1\right)-1\)

\(=u_{k+2}^2-u_{k+2}-u_{k+1}^2+u_{k+1}-1\)

\(=u_{k+2}^2-u_{k+2}+2-u_{k+2}-1\)

\(=\left(u_{k+2}-1\right)^2\) (đpcm)

22 tháng 9 2020

e cảm ơn ạ