K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1, phương trình 2sin^2x-5sinxcosx-cos^2x=-2 tương đương vs pt nào sau đây

A. 3cos2x-5sin2x=5 B.3cos2x+5sin2x=-5 C. 3cos2x-5sin2x=-5 D. 3cos2x+5sin2x=5

2, Phương trình 2m cos(\(\frac{9\pi}{2}\)-x)+(3m-2)sin(5\(\pi\)-x)+4m-3=0 có đúng 1 nghiệm x\(\in\)[-\(\pi\)/6;5pi/6]

3, Để phương trình 2\(\sqrt{3}\) cos^2x+6sinxcosx=m+\(\sqrt{3}\) có 2 nghiệm trong khỏng (0;pi)thì giá trị của m là

4, Tìm tất cả giá trị của tham số m để phương trình sin^2x+2(m+1)sinx-3m(m-2)=0 có nghiệm

5, Số nghiệm thuộc (0;pi) của phương trình sinx+\(\sqrt{1+cos^2x}\)=2(cos\(^2\)3x+1) là

6, Tìm m để phương trình (cosx+1)(cos2x-mcosx)=msin^2x có đúng 2 nghiệm x\(\in\)[0;2pi/3]

7, gpt \(\sqrt{3}\) tan^2x-2tanx-căn3=0

8, Tìm giá trị m để phương trình 5sinx-m=tan^2x(sinx-1)có đúng 3 nghiệm thuộc (-pi;pi/2)

9, Có bao nhiêu giá trị nguyên của m để pt cos2x+sinx+m=0 có nghiệm x\(\in\) [-pi/6;pi/4]

10, tìm GTNN và GTLN của

a, y=4\(\sqrt{sinx+3}\) -1 b, y=\(\frac{12}{7-4sinx}\) trên đoạn[-pi/6;5pi/6] c, y=2cos^2x-sin2x+5

d, y=sinx+cos2x trên đoạn [0;pi]

11, Tìm số nghiệm của phương trình sin(cosx)=0 trên đoạn x[o;2pi]

12, Tính tổng các nghiệm của phương trình cos\(^2\) x-sin2x=\(\sqrt{2}\) +cos\(^2\) (\(\frac{\pi}{2}\) +x) trên khoảng(0;2pi)

13, nghiệm của pt \(\frac{sin2x+2cosx-sinx-1}{tanx+\sqrt{3}}\)=0 được biểu diễn bởi mấy điểm trên đường tròn lượng giác

14, giải pt cotx-tanx=\(\frac{2cos4x}{sin2x}\)

15, tìm m để pt (sinx-1)(cos^2x -cosx+m)=0 có đúng 5 nghiệm thuộc đoạn [0;2pi]

0
5 tháng 9 2020

đề câu 1 đúng r

5 tháng 9 2020

ngại viết quá hihi, mà hơi ngáo tí cái dạng này lm rồi mà cứ quên

bài trước mk bình luận bạn đọc chưa nhỉ

Gọi M,m tương ứng là GTLNvà GTNN của hàm số y=\(\frac{2cosx+1}{cosx-2}\). Khẳng định nào sau đây đúng A.M+9m=0 B.9M-m=0 C.9M+m=0 D.M+m=0 2,Cho hàm số y=\(\frac{2kcosx+k+1}{cosx+sinx+2}\). GTLN của hàm số y là nhỏ nhất khi k thuộc khoảng A.(0;\(\frac{1}{2}\)) B.(\(\frac{1}{3}\);\(\frac{3}{4}\)) C.(\(\frac{3}{4}\);\(\frac{4}{3}\)) D(\(\frac{3}{2}\);2) 3, Phương trình cos2x.sin5x+1=0 có...
Đọc tiếp

Gọi M,m tương ứng là GTLNvà GTNN của hàm số y=\(\frac{2cosx+1}{cosx-2}\). Khẳng định nào sau đây đúng

A.M+9m=0 B.9M-m=0 C.9M+m=0 D.M+m=0

2,Cho hàm số y=\(\frac{2kcosx+k+1}{cosx+sinx+2}\). GTLN của hàm số y là nhỏ nhất khi k thuộc khoảng

A.(0;\(\frac{1}{2}\)) B.(\(\frac{1}{3}\);\(\frac{3}{4}\)) C.(\(\frac{3}{4}\);\(\frac{4}{3}\)) D(\(\frac{3}{2}\);2)

3, Phương trình cos2x.sin5x+1=0 có mấy nghiệm thuộc đoạn \([\)\(\frac{-\pi}{2}\);2\(\pi\)]

4,Phương trình cos\(\frac{5x}{2}\).cos\(\frac{x}{2}\)-1=sin4x.sin2x có mấy nghiệm thuộc [-100\(\pi\);100\(\pi\)]

5, Phương trình 5+\(\sqrt{3}\) sinx(2cosx-3)=cosx(2cosx+3) có mấy nghiệm thuộc khoảng (0;10pi)

6, Gọi S là tập hợp các nghiệm thuộc khoảng (0;100pi) của phương trình (sin\(\frac{x}{2}\)+cos\(\frac{x}{2}\))\(^2\)+căn 3.cosx=3.Tính tổng phần tử S

7, Gọi x0 là nghiệm dương min của cos2x+\(\sqrt{3}\)sin2x+\(\sqrt{3}\)sĩn-cosx=2. Mệnh đề nào sau đây đứng

A.(0;pi/12) B.[pi/12;pi/6] C(pi/6;pi/3] D.(pi/3;pi/2]

8,Phương trình 48-\(\frac{1}{cos^4x}\)-\(\frac{2}{sin^2x}\)(1+cot2x.cotx)=0 có mấy nghiệm

9, GỌI S là tập hợp tất cả các giá trị nguyên của tham số m để pt 3\(\sqrt{sinx+cosx+2}\)+\(\sqrt{2}\)sin(x+\(\frac{\pi}{4}\))+m-1=0 có nghiệm .số phần tử của S là

9
NV
18 tháng 10 2020

1.

Hàm tuần hoàn với chu kì \(2\pi\) nên ta chỉ cần xét trên đoạn \(\left[0;2\pi\right]\)

\(y'=\frac{-4}{\left(cosx-2\right)^2}.sinx=0\Leftrightarrow x=k\pi\)

\(\Rightarrow x=\left\{0;\pi;2\pi\right\}\)

\(y\left(0\right)=-3\) ; \(y\left(\pi\right)=\frac{1}{3}\) ; \(y\left(2\pi\right)=-3\)

\(\Rightarrow\left\{{}\begin{matrix}M=\frac{1}{3}\\m=-3\end{matrix}\right.\)

\(\Rightarrow9M+m=0\)

NV
18 tháng 10 2020

2.

\(\Leftrightarrow y.cosx+y.sinx+2y=2k.cosx+k+1\)

\(\Leftrightarrow y.sinx+\left(y-2k\right)cosx=k+1-2y\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\Rightarrow y^2+\left(y-2k\right)^2\ge\left(k+1-2y\right)^2\)

\(\Leftrightarrow2y^2-4k.y+4k^2\ge4y^2-4\left(k+1\right)y+\left(k+1\right)^2\)

\(\Leftrightarrow2y^2-4y-3k^2+2k+1\le0\)

\(\Leftrightarrow2\left(y-1\right)^2\le3k^2-2k+1\)

\(\Leftrightarrow y\le\sqrt{\frac{3k^2-2k+1}{2}}+1\)

\(y_{max}=f\left(k\right)=\frac{1}{\sqrt{2}}\sqrt{3k^2-2k+1}+1\)

\(f\left(k\right)=\frac{1}{\sqrt{2}}\sqrt{3\left(k-\frac{1}{3}\right)^2+\frac{2}{3}}+1\ge\frac{1}{\sqrt{3}}+1\)

Dấu "=" xảy ra khi và chỉ khi \(k=\frac{1}{3}\)

Đáp án A

AH
Akai Haruma
Giáo viên
24 tháng 7 2020

m)

$\sin 4x-\cos ^4x=\cos x-2$

$\Leftrightarrow (\sin ^2x+\cos ^2x)(\sin ^2x-\cos ^2x)=\cos x-2$

$\Leftrightarrow \sin ^2x-\cos ^2x=\cos x-2$

$\Leftrightarrow 1-2\cos ^2x=\cos x-2$

$\Leftrightarrow 2\cos ^2x+\cos x-3=0$

$\Leftrightarrow (2\cos x+3)(\cos x-1)=0$

Nếu $2\cos x+3=0\Rightarrow \cos x=\frac{-3}{2}< -1$ (loại)

Nếu $\cos x-1=0\Rightarrow \cos x=1\Rightarrow x=2k\pi$ với $k$ nguyên

AH
Akai Haruma
Giáo viên
24 tháng 7 2020

k) ĐK:.......

$\tan ^25x=\frac{1}{3}\Rightarrow \tan 5x=\pm \sqrt{\frac{1}{3}}$

$\Rightarrow 5x=k\pi +\tan ^{-1}\frac{\pm 1}{\sqrt{3}}$

$\Rightarrow x=frac{k}{5}\pi +\tan ^{-1}\frac{\pm 1}{\sqrt{3}}$ với $k$ nguyên.

Số đẹp hơn thì có thể giải như sau:

$PT \Leftrightarrow \frac{\sin ^25x}{\cos ^25x}=\frac{1}{3}$

$\Rightarrow 3\sin ^25x=\cos ^25x$

$\Rightarrow 4\\sin ^25x=1\Rightarrow \sin 5x=\pm \frac{1}{2}$

$\Rightarrow x=\frac{k\pi}{5}\pm \frac{\pi}{30}$ với $k$ nguyên.

27 tháng 9 2020

Câu 1 với câu 2 sai đề, sin và cos nằm trong [-1;1], mà căn 2 với căn 3 lớn hơn 1 rồi

3/ \(\sin x=\cos2x=\sin\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}-2x+k2\pi\\x=\pi-\frac{\pi}{2}+2x+k2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\frac{2}{3}\pi\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

4/ \(\Leftrightarrow\cos^2x-2\sin x\cos x=0\)

Xét \(\cos x=0\) là nghiệm của pt \(\Rightarrow x=\frac{\pi}{2}+k\pi\)

\(\cos x\ne0\Rightarrow1-2\tan x=0\Leftrightarrow\tan x=\frac{1}{2}\Rightarrow x=...\)

5/ \(\Leftrightarrow\sin\left(2x+1\right)=-\cos\left(3x-1\right)=\cos\left(\pi-3x+1\right)=\sin\left(\frac{\pi}{2}-\pi+3x-1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\frac{\pi}{2}-\pi+3x-1\\2x+1=\pi-\frac{\pi}{2}+\pi-3x+1\end{matrix}\right.\Leftrightarrow....\)

6/ \(\Leftrightarrow\cos\left(\pi\left(x-\frac{1}{3}\right)\right)=\frac{1}{2}\Leftrightarrow\pi\left(x-\frac{1}{3}\right)=\pm\frac{\pi}{3}+k2\pi\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{1}{3}=\frac{1}{3}+2k\Rightarrow x=\frac{2}{3}+2k\left(1\right)\\x-\frac{1}{3}=-\frac{1}{3}+2k\Rightarrow x=2k\left(2\right)\end{matrix}\right.\)

\(\left(1\right):-\pi< x< \pi\Rightarrow-\pi< \frac{2}{3}+2k< \pi\) (Ủa đề bài sai hay sao ý nhỉ?)

7/ \(\Leftrightarrow\left[{}\begin{matrix}5x+\frac{\pi}{3}=\frac{\pi}{2}-2x+\frac{\pi}{3}\\5x+\frac{\pi}{3}=\pi-\frac{\pi}{2}+2x-\frac{\pi}{3}\end{matrix}\right.\Leftrightarrow...\)

Thui, để đây bao giờ...hết lười thì làm tiếp :(

27 tháng 9 2020

7)

\(sin\left(5x+\frac{\pi}{3}\right)=cos\left(2x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow sin\left(5x+\frac{\pi}{3}\right)=sin\left(\frac{\pi}{2}-2x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+\frac{\pi}{3}=\frac{\pi}{2}-2x-\frac{\pi}{3}+k2\pi\\5x+\frac{\pi}{3}=\pi-\left(\frac{\pi}{2}-2x-\frac{\pi}{3}\right)+k2\pi\end{matrix}\right.\left(k\in Z\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-\pi}{42}+k\frac{2\pi}{7}\\x=\frac{\pi}{6}+k\frac{2\pi}{3}\end{matrix}\right.\left(k\in Z\right)\)

Do:\(0< x< \pi\)

\(Với:x=\frac{-\pi}{42}+k\frac{2\pi}{7}\left(k\in Z\right)\Rightarrow khôngtìmđượck\)

\(Với:x=\frac{\pi}{6}+k\frac{2\pi}{3}\left(k\in Z\right)\Leftrightarrow\frac{1}{4}< k< \frac{5}{4}\Rightarrow k=\left\{0;1\right\}\Rightarrow\left[{}\begin{matrix}k=0\Rightarrow x=\frac{\pi}{6}\\k=1\Rightarrow x=\frac{5\pi}{6}\end{matrix}\right.\)

Vậy nghiệm của pt là: \(x=\frac{\pi}{6};x=\frac{5\pi}{6}\)

1. Tập giá trị của hs: y = sin2x + cos2x là? 2. Giải pt: \(\frac{cosx-2sinx.cosx}{2cos^2x+sinx-1}=\sqrt{3}\) 3. Tìm GTLN và GTNN của hs: \(y=\frac{sinx+2cosx+3}{2+cosx}\) 4. Tập giá trị của: \(y=\sqrt{3}cos\frac{x}{2}-sin\frac{x}{2}\) 5. Giải pt: \(\sqrt{3}\left(sin2x+cos7x\right)=sin7x-cos2x\) 6. Giải pt: \(cos5x.cosx=cos4x.cos2x+3cos^2x+1\) 7. Đồ thị hs: \(y=sin\left(x+\frac{\pi}{4}\right)\) đi qua điểm nào sau đây? ...
Đọc tiếp

1. Tập giá trị của hs: y = sin2x + cos2x là?

2. Giải pt: \(\frac{cosx-2sinx.cosx}{2cos^2x+sinx-1}=\sqrt{3}\)

3. Tìm GTLN và GTNN của hs: \(y=\frac{sinx+2cosx+3}{2+cosx}\)

4. Tập giá trị của: \(y=\sqrt{3}cos\frac{x}{2}-sin\frac{x}{2}\)

5. Giải pt: \(\sqrt{3}\left(sin2x+cos7x\right)=sin7x-cos2x\)

6. Giải pt: \(cos5x.cosx=cos4x.cos2x+3cos^2x+1\)

7. Đồ thị hs: \(y=sin\left(x+\frac{\pi}{4}\right)\) đi qua điểm nào sau đây? \(a.M\left(\frac{\pi}{4};0\right)\) \(b.M\left(\frac{\pi}{2};1\right)\) \(c.M\left(\frac{-\pi}{4};0\right)\) d. M(1;1)

8. Nghiệm của pt: \(2sin^2x-3sinx+1=0\) thỏa đk: \(0\le x\le\frac{\pi}{2}\) là:

9. Cho pt: m(sinx+cosx)+sinx.cosx+1=0. Tìm m để pt có đúng 1 nghiệm thuộc: \(\left[\frac{-\pi}{2};0\right]\)

10. Giải pt: \(\sqrt{3}cos5x-sin5x=2cos3x\)

11. Tập giá trị của hs: y = cos2x + 4sinx - 2 là?

12. Pt: \(2cos^2x+5sinx=4\) có nghiệm âm lớn nhất =?

13. Tổng tất cả các nghiệm của pt: cos5x + cos2x + 2sin3x.sin2x = 0 trên đoạn: \(\left[0;2\pi\right]\) là?

14. Tìm m để pt: cos2x - (2m - 1)cosx - m + 1 = 0 có đúng 2 nghiệm thuộc: \(\left[\frac{-\pi}{2};\frac{\pi}{2}\right]\) là?

15. Đồ thị hs: y = tanx - 2 đi qua? a. O(0;0) b.M\(\left(\frac{\pi}{4};-1\right)\) c. \(N\left(1;\frac{\pi}{4}\right)\) d. \(P\left(\frac{-\pi}{4};1\right)\)

6
NV
21 tháng 9 2020

6.

\(\Leftrightarrow\frac{1}{2}cos6x+\frac{1}{2}cos4x=\frac{1}{2}cos6x+\frac{1}{2}cos2x+\frac{3}{2}+\frac{3}{2}cos2x+1\)

\(\Leftrightarrow cos4x=4cos2x+5\)

\(\Leftrightarrow2cos^22x-1=4cos2x+5\)

\(\Leftrightarrow cos^22x-2cos2x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=3>1\left(ktm\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

7.

Thay lần lượt 4 đáp án ta thấy chỉ có đáp án C thỏa mãn

8.

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=\left\{\frac{\pi}{6};\frac{\pi}{2}\right\}\)

NV
21 tháng 9 2020

9.

Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}-1\le t\le1\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)

\(\Rightarrow mt+\frac{t^2-1}{2}+1=0\)

\(\Leftrightarrow t^2+2mt+1=0\)

Pt đã cho có đúng 1 nghiệm thuộc \(\left[-1;1\right]\) khi và chỉ khi: \(\left[{}\begin{matrix}m\ge1\\m\le-1\end{matrix}\right.\)

10.

\(\frac{\sqrt{3}}{2}cos5x-\frac{1}{2}sin5x=cos3x\)

\(\Leftrightarrow cos\left(5x-\frac{\pi}{6}\right)=cos3x\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-\frac{\pi}{6}=3x+k2\pi\\5x-\frac{\pi}{6}=-3x+k2\pi\end{matrix}\right.\)

28 tháng 8 2021

1.

\(3cos2x-7=2m\)

\(\Leftrightarrow cos2x=\dfrac{2m-7}{3}\)

Phương trình đã cho có nghiệm khi:

\(-1\le\dfrac{2m-7}{3}\le1\)

\(\Leftrightarrow2\le m\le5\)

28 tháng 8 2021

2.

\(2cos^2x-\sqrt{3}cosx=0\)

\(\Leftrightarrow cosx\left(2cosx-\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pm\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\) Có 4 nghiệm \(\dfrac{\pi}{2};\dfrac{3\pi}{2};\dfrac{\pi}{6};\dfrac{11\pi}{6}\) thuộc đoạn \(\left[0;2\pi\right]\)