K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2022

S = - ( a - b - c ) + ( - c + b + a ) - ( a + b )

S= - a + b + c - c + b + a - a - b

S= ( -a + a - a ) + ( b + b - b ) + ( c - c )

S= -a + b 

S= b - a mà a > b 

=> S là một số nguyên âm     tik nhá ^^

 

Đề có vẻ sai nhé bạn!!!

Thiếu dấu!!

hok tốt!!!

^^

7 tháng 4 2020

a/a+b>a/a+b+c

b/b+c>b/a+b+c

c/c+a>c/a+b+c

Cộng hai vế của biểu thức

M>(a+b+c)/(a+b+c)=1

8 tháng 4 2020

bạn làm đúng rồi nhé

chúc bạn học tốt@

10 tháng 7 2015

+ Vì a+ b + c > a + b => \(\frac{a}{a+b+c}<\frac{a}{a+b}\)

Tương tự, \(\frac{b}{a+b+c}<\frac{b}{b+c}\)\(\frac{c}{a+b+c}<\frac{c}{c+a}\)

=> \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

=> \(\frac{a+b+c}{a+b+c}=1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) (*)

+ ta có: Nếu phân số \(\frac{x}{y}<1\) thì \(\frac{x}{y}<\frac{x+m}{y+m}\)

Áp dụng với \(\frac{a}{a+b}<1;\frac{b}{b+c}<1;\frac{c}{c+a}<1\) ta có:

\(\frac{a}{a+b}<\frac{a+c}{a+b+c};\frac{b}{b+c}<\frac{b+a}{b+c+a};\frac{c}{c+a}<\frac{c+b}{c+a+b}\). cộng từng vế ta được

=>  \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<\frac{a+c}{a+b+c}+\frac{b+a}{b+c+a} +\frac{c+b}{c+a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(**)

Từ (*)(**) =>  \(1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<2\)

Vậy \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) không là số nguyên

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<2\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không phải là số nguyên

=>đpcm

5 tháng 3 2018

Ta có:

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(\Rightarrow M>\frac{a+b+c}{a+b+c}\)

\(\Rightarrow M>1\) (1)

Ta có:

\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

\(\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{a+b}{a+b+c}\)

\(\frac{c}{c+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}\)

\(\Rightarrow M< \frac{2\left(a+b+c\right)}{a+b+c}\)

\(\Rightarrow M< 2\) (2)

Từ (1) và (2) => 1 < M < 2

=> M không phải là một số nguyên dương (đpcm)

5 tháng 3 2018

CM :        1 < M < 2 

10 tháng 1 2018

p+q+r=bc+a+ab+c+ca+b=2(a+b+c)2

=> p+q+r chẵn

+) nếu p+q+r chẵn thì ít nhất 2 trong 3 số đó bằng nhau

+) nếu có một số bằng 2 thì gỉa sử p=2

<=> p= bc+a=1+1

Mà a,b,c nguyên dương => 2=1+1 = bc+a= ab+c 

=> p=q (đpcm)

17 tháng 11 2016

Mk chả hiểu gì cả