Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai số đói nhau có tổng bằng 0
x+y=-a+b-c-d+c-b+d+a=0
Vậy x và y là 2 số đối nhau
a) (a-b+c)-(d+c-b)
= a - b + c - d - c + b
= a - d
b) -35 chia hết cho n-8
=> n - 8 thuộc Ư(-35)
=> n - 8 thuộc {-1; 1; -5; 5; -7; 7; - 35; 35}
=> n thuộc {7; 9; 3; 13; 1; 15; -27; 43}
c) a và b là 2 số nguyên khác nhau
=> a - b và b - a khác 0
a - b và b - a là 2 số đối nhau
=> (a - b)(b - a) là số nguyên âm
\(a,\left(a-b+c\right)-\left(d+c-b\right)\)
\(< =>a-b+c-d-c+b\)
\(< =>a-d\)
\(b,-35⋮n-8\)
\(=>n-8\inƯ\left(-35\right)\)
Nên ta có bảng sau :
n-8 | 1 | -1 | -5 | 55 | -7 | 7 | -35 | 35 |
n | 7 | 9 | 3 | 13 | 1 | 15 | -27 | 43 |
Vậy ...
\(c,\)a và b là 2 số nguyên khác nhau
=>a-b khác b-a
=>a-b và b-a là 2 số đối nhau
=>(a-b).(b-a) là số nguyên âm
Nếu b=0; a>b => a>0 => a nguyên dương
Nếu b>0; a>0 => a>0 => a nguyên dương
Vậy nếu b=0 hoặc b nguyên dương thì a nguyên dương
a) Tìm hai số nguyên a , b biết :
(a + 2) . (b – 3) = 5.
Vì a,b là số nguyên => a+2;b-3 là số nguyên
=> a+2;b-3 thuộc Ư(5)
Ta có bảng:
a+2 | 1 | 5 | -1 | -5 |
b-3 | 5 | 1 | -5 | -1 |
a | -1 | 3 | -3 | -7 |
b | 8 | 4 | -2 | 2 |
Vậy..........................................................................................................................................
b)Dễ rồi nên bn tự làm nha
c)+)Ta có:p là số nguyên tố;p>3
=>p\(⋮̸3\)
=>p chia 3 dư 1 hoặc p chia 3 dư 2
=>p=3k+1 hoặc p=3k+2 (k\(\inℕ^∗\))
*Th1:p=3k+1 (k\(\inℕ^∗\))
=>(p-1).(p+1)=(3k+1-1).(3k+1+1)=3k.(3k+2)\(⋮\)3(1)
+)Ta lại có:p là số nguyên tố;p>3
=>p là số lẻ
=>p-1 là số chẵn
=>p+1 là số chẵn
=>(p-1) và (p+1) là 2 số chẵn liên tiếp
=>(p-1).(p+1)\(⋮\)8(2)
+)Mà ƯCLN(3,8)=1(3)
+)Từ (1);(2) và (3)
=>(p-1).(p+1)\(⋮\)3.8
=>(p-1).(p+1)\(⋮\)24
Vậy (p-1).(p+1)\(⋮\)24
*TH2:Bạn làm tương tự nha bài này dài lắm nên mk ko làm hết dc
Chúc bn học tốt
Do a,b là 2 số nguyên khác nhau
Không làm mất tính tổng quát
Giả sử a>b
Khi đó a-b>0 và b-a<0
=> (a-b)(a+b)<0 (đpcm)
Câu hỏi của Lê Linh An - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo nhé!
Xét :\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)
\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)+\left(d^2+d\right)\)
\(=a.\left(a+1\right)+b.\left(b+1\right)+c.\left(c+1\right)+d.\left(d+1\right)\)
Ta có : \(a.\left(a+1\right);b.\left(b+1\right);c.\left(c+1\right);d.\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho \(2\)
\(\implies\) \(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho \(2\)
Mà \(a^2+b^2+c^2+d^2=2.\left(b^2+d^2\right)\) chia hết cho \(2\)
\(\implies\) \(a+b+c+d\) chia hết cho \(2\)
Mà \(a+b+c+d\) \(\geq\) \(4\) \(\implies\) \(a+b+c+d\) là hợp số\(\left(đpcm\right)\)