K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2015

+ Vì a+ b + c > a + b => \(\frac{a}{a+b+c}<\frac{a}{a+b}\)

Tương tự, \(\frac{b}{a+b+c}<\frac{b}{b+c}\)\(\frac{c}{a+b+c}<\frac{c}{c+a}\)

=> \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

=> \(\frac{a+b+c}{a+b+c}=1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) (*)

+ ta có: Nếu phân số \(\frac{x}{y}<1\) thì \(\frac{x}{y}<\frac{x+m}{y+m}\)

Áp dụng với \(\frac{a}{a+b}<1;\frac{b}{b+c}<1;\frac{c}{c+a}<1\) ta có:

\(\frac{a}{a+b}<\frac{a+c}{a+b+c};\frac{b}{b+c}<\frac{b+a}{b+c+a};\frac{c}{c+a}<\frac{c+b}{c+a+b}\). cộng từng vế ta được

=>  \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<\frac{a+c}{a+b+c}+\frac{b+a}{b+c+a} +\frac{c+b}{c+a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(**)

Từ (*)(**) =>  \(1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<2\)

Vậy \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) không là số nguyên

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<2\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không phải là số nguyên

=>đpcm

20 tháng 3 2022

Tham khảo:Câu hỏi của Tâm Lê Huỳnh Minh - Toán lớp 7 - Học trực tuyến OLM

5 tháng 3 2018

Ta có:

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(\Rightarrow M>\frac{a+b+c}{a+b+c}\)

\(\Rightarrow M>1\) (1)

Ta có:

\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

\(\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{a+b}{a+b+c}\)

\(\frac{c}{c+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}\)

\(\Rightarrow M< \frac{2\left(a+b+c\right)}{a+b+c}\)

\(\Rightarrow M< 2\) (2)

Từ (1) và (2) => 1 < M < 2

=> M không phải là một số nguyên dương (đpcm)

5 tháng 3 2018

CM :        1 < M < 2 

2 tháng 4 2018

\(\frac{a}{b+c}>\frac{a}{a+b+c},\frac{b}{b+c}>\frac{b}{b+c+a},\frac{c}{c+a}>\frac{c}{c+a+b}\)

\(\Rightarrow A>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c},\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{b+a}{b+c+a},\frac{c}{a+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{c+a+b}\)

\(\Rightarrow A< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{c+a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Vậy \(1< A< 2\Rightarrow A\)không phải là một số nguyên dương

2 tháng 4 2018

bài này mình làm rồi

NM
18 tháng 3 2022

ta có bất đẳng thức sau : 

\(\frac{a+b}{a+b+c+d}< \frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\)

tương tự ta sẽ có 

\(\frac{2\left(a+b+c+d\right)}{\left(a+b+c+d\right)}< A< \frac{3\left(a+b+c+d\right)}{\left(a+b+c+d\right)}\) hay 2<A<3 nên A không phải là số nguyên

18 tháng 3 2019

Ta có \(\frac{a}{a+b+c}\)\(\frac{a}{a+b+c+d}\)

       \(\frac{b}{b+c+a}\)\(\frac{b}{b+c+a+d}\)

        tương tự ....

suy ra cái đề > 1 dpcm

10 tháng 5 2020

ko biet thi dung lam nhe con

1 tháng 3 2018

Có : P > a/a+b+c + b/a+b+c + c/a+b+c = a+b+c/a+b+c = 1

Lại có : 0 < a/a+b ; b/b+c ; c/c+a < 1

=> P < a+c/a+b+c + b+a/a+b+c + c+b/a+b+c = 2a+2b+2c/a+b+c = 2

=> 1 < P < 2

=> P ko phải là số tự nhiên

Tk mk nha

1 tháng 3 2018

Ta có: \(\hept{\begin{cases}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+b+c}\end{cases}}\) Cộng theo vế suy ra : \(P>1\)

Vì \(a;b;c>0\Leftrightarrow\frac{a}{a+b};\frac{b}{b+c};\frac{c}{c+a}< 1\)

Áp dụng bất đẳng thức : \(\frac{q}{p}< \frac{q+m}{p+m}\left(q< p\right)\) ta có:

\(P< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}=2\)