Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(5\left(m-3\right)^2-5\)
\(\ge-5\left(\forall m\right)\)
Dấu "=" xảy ra khi: \(\left(m-3\right)^2=0\Rightarrow m=3\)
Vậy \(Min=-5\Leftrightarrow m=3\)
\(5\left(m-3\right)^2-5\)
Ta có : \(5\left(m-3\right)^2\ge0\forall m\Rightarrow5\left(m-3\right)^2-5\ge-5\)
Dấu " = " xảy ra <=> m - 3 = 0 => m = 3
Vậy GTNN của biểu thức = -5, đạt được khi m = 3
đặt biểu thức trên là A.ta có
Amin khi và chỉ khi \(3x^2\)min.....vì \(3x^2\)\(\ge1\)v x
Nên \(3x^2\)min = 1
\(3x^2-3x=1-3.x=-2x\)
vậy Amin=-2x
Max:
\(M=\frac{x^2+xy+y^2}{x^2+y^2}=1+\frac{xy}{x^2+y^2}\le1+\frac{xy}{2\left|xy\right|}\le1+\frac{xy}{2xy}=1+\frac{1}{2}=\frac{3}{2}\)
Dấu "=" xảy ra tại x=y
Nếu không có thêm điều kiện gì của x (ví dụ x>0) thì biểu thức này không tồn tại GTNN
M= \(x^2-3x+5=x^2-2\times\frac{3}{2}\times x+\frac{9}{4}-\frac{9}{4}+5\)
M = \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)
Vì \(\left(x-\frac{3}{3}\right)^2\ge0\)
=> \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Vậy MIN M = \(\frac{11}{4}\)dấu bằng xảy ra khi và chỉ khi \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
\(M=x^2-3x+5=\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}\right)+5-\frac{9}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Vậy \(MinM=\frac{11}{4}\Leftrightarrow\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)