Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt biểu thức trên là A.ta có
Amin khi và chỉ khi \(3x^2\)min.....vì \(3x^2\)\(\ge1\)v x
Nên \(3x^2\)min = 1
\(3x^2-3x=1-3.x=-2x\)
vậy Amin=-2x
M= \(x^2-3x+5=x^2-2\times\frac{3}{2}\times x+\frac{9}{4}-\frac{9}{4}+5\)
M = \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)
Vì \(\left(x-\frac{3}{3}\right)^2\ge0\)
=> \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Vậy MIN M = \(\frac{11}{4}\)dấu bằng xảy ra khi và chỉ khi \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
\(M=x^2-3x+5=\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}\right)+5-\frac{9}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Vậy \(MinM=\frac{11}{4}\Leftrightarrow\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
a) \(A=x^2-2.10x+100+1\)
\(A=\left(x-10\right)^2+1>=1\)với mọi x
Dấu = xảy ra khi x-10 =0
=>x=10
Min A=1 khi x=10
b) Câu b bạn viết sai đề rồi B= -x^2 +4x -3 mới làm dc
Tìm GTNN của A=\(x^4-6x^3+12x^2-12x+2021\)
Giúp mk vs ạ mk đang cần gấp ai nhanh mk sẽ vote cho ạ :<
\(Sửa:A=x^4-6x^3+13x^2-12x+2021\\ A=\left(x^4-6x^3+9x^2\right)+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x\right)^2+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x+2\right)^2+2017\ge2017\\ A_{min}=2017\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Bài làm:
Ta có: \(5\left(m-3\right)^2-5\)
\(\ge-5\left(\forall m\right)\)
Dấu "=" xảy ra khi: \(\left(m-3\right)^2=0\Rightarrow m=3\)
Vậy \(Min=-5\Leftrightarrow m=3\)
\(5\left(m-3\right)^2-5\)
Ta có : \(5\left(m-3\right)^2\ge0\forall m\Rightarrow5\left(m-3\right)^2-5\ge-5\)
Dấu " = " xảy ra <=> m - 3 = 0 => m = 3
Vậy GTNN của biểu thức = -5, đạt được khi m = 3