K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

Max:

\(M=\frac{x^2+xy+y^2}{x^2+y^2}=1+\frac{xy}{x^2+y^2}\le1+\frac{xy}{2\left|xy\right|}\le1+\frac{xy}{2xy}=1+\frac{1}{2}=\frac{3}{2}\)

Dấu "=" xảy ra tại x=y

8 tháng 11 2016

1) M = \(x^2+y^2-xy-x+y+1\)=\(x\left(x-y\right)-\left(x-y\right)+\left(y^2-1\right)\)=\(\left(x-1\right)\left(x-y\right)+\left(y^2-1\right)\)

Vậy Mmin =\(\left(y^2+1\right)\)khi \(x-1=0\)hoặc \(x-y=0\)

                                        =>     \(x=1\)            =>\(x=y\)

Mình chỉ có thể giúp bạn câu 1 thôi

                                                                                                                                                                                                   

4 tháng 9 2020

Ta có : A = x(x + 1)(x2 +  x - 4)

= (x2 + x)(x2 + x - 4)

Đặt x2 + x = t

Khi đó A = t(t - 4)

= t2 - 4t = t2 - 4t + 4 - 4 = (t - 2)2 - 4 \(\ge\)-4

 Dấu "=" xảy ra <=> t - 2 = 0

=> t = 2

=> x2 + x = 2

=> x2 + x - 2 = 0

=> x2 + 2x - x - 2 = 0

=> x(x + 2) - (x + 2) = 0

=> (x - 1)(x + 2) = 0

=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy Min A = -4 <=> x \(\in\left\{1;-2\right\}\)

4 tháng 9 2020

A = x( x + 1 )( x2 + x - 4 )

= ( x2 + x )( x2 + x - 4 )

Đặt t = x2 + x

A <=> t( t - 4 )

      = t2 - 4t

      = ( t2 - 4t + 4 ) - 4

      = ( t - 2 )2 - 4 

      = ( x2 + x - 2 )2 - 4 ≥ -4 ∀ x

Đẳng thức xảy ra <=> x2 + x - 2 = 0

                             <=> x2 - x + 2x - 2 = 0

                             <=> x( x - 1 ) + 2( x - 1 ) = 0

                             <=> ( x - 1 )( x + 2 ) = 0

                             <=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

=> MinA = -4 <=> x = 1 hoặc x = -2