K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2017

Bài 1 : Bn tự vẽ hình nhé:

Xét tam giác ABC cân tại A có :

<B=<C mà <C=20  độ nên góc B =20 độ

Ta có : <CBD+<DBA=<B

          10 độ+<DBA=20 độ

         <DBA=10 độ 

xét tam giác ABD có

từ đó bn tự làm và tà tính đc <ADB=70 độ

Bai 1:Cho tam giác ABC có AB<AC,AB=b,AC=c. Qua M là trung điểm của BC kẻ đường vuông góc với phân giác của góc A, cắt các đường AB, AC lần lượt tại D,E1, C/m BD=CE2, Tính AD&BD theo b,cBài 2:Cho \(\Delta ABC\)cân tại A,\(\widehat{BAC}\)=100\(^0\).D là điểm thuộc miền trong của tam giác ABC sao cho góc DBC=10 độ. Góc DCB=20độ.Tinh góc ADBBài...
Đọc tiếp

Bai 1:Cho tam giác ABC có AB<AC,AB=b,AC=c. Qua M là trung điểm của BC kẻ đường vuông góc với phân giác của góc A, cắt các đường AB, AC lần lượt tại D,E

1, C/m BD=CE

2, Tính AD&BD theo b,c

Bài 2:Cho \(\Delta ABC\)cân tại A,\(\widehat{BAC}\)=100\(^0\).D là điểm thuộc miền trong của tam giác ABC sao cho góc DBC=10 độ. Góc DCB=20độ.

Tinh góc ADB

Bài 3:Tính 

\(\frac{9}{10}-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)

Bài 4:

Cho\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)và a+b+c\(\ne0\); a=2005

Tính b,c

Bài 5:

Chứng minh rằng hệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)thì ta có hệ thức\(\frac{a}{b}=\frac{c}{d}\)

Bài 6:

Vẽ đồ thị hàm số

\(y=\hept{\begin{cases}2x;x\ge0\\x,x< 0\end{cases}}\)

Bài 7: Độ dài cạnh của tam giác ứng với tỉ lệ 2,3,4. Ba chiều cao tương ứng với 3 cạnh đó tỉ lệ với những số nào?

Cứu mình với thầy chủ nhiệm giao bài "dễ"quá mình cảm động tới rớt nước mắt òi. Vắt não từ hôm qua tới giờ mới làm được mấy bài dễ.T^T T^T T^T T^T

1
1 tháng 5 2018

4/

Ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

=> a = b = c = 2005

18 tháng 1 2017

Bài 1:

Gọi độ dài của 3 cạnh tam giác là \(x;y;z\) \(\left(x;y;z>0;x:y:z=2:3:4\right)\) và ba chiều cao tương ứng là \(a;b;c\)

Đặt: \(x=2.t\)

\(y=3.t\)

\(z=4.t\)

Gọi S là diện tích của tam giác đó.

\(2S=x.a=y.b=z.c\)

\(\Rightarrow a.2.t=b.3.t=c.4.t\)

\(\Rightarrow2.a=3.b=c.4\)

\(\Rightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)

Vậy 3 chiều cao tương ứng với 3 cạnh tỉ lệ với: \(6;4;3\)

19 tháng 1 2017

Bài 2:

Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{ABC}\) + \(\widehat{BAC}\) + \(\widehat{BCA}\) = 180o

=> \(\widehat{BAC}\) + \(\widehat{BCA}\) = 180o - \(\widehat{ABC}\)

=> \(\widehat{BAC}\) + \(\widehat{BCA}\) = 180o - 60o

=> \(\widehat{BAC}\) + \(\widehat{BCA}\) = 120o

Ta có: \(\widehat{IAC}\) = \(\frac{1}{2}\) \(\widehat{BAC}\) (AI là tia pg)

\(\widehat{ICA}\) = \(\frac{1}{2}\) \(\widehat{BCA}\) (CI là tia pg)

=> \(\widehat{IAC}\) + \(\widehat{ICA}\) = \(\frac{1}{2}\) \(\widehat{BAC}\) + \(\frac{1}{2}\) \(\widehat{BCA}\)

=> \(\widehat{IAC}\) + \(\widehat{ICA}\) = \(\frac{1}{2}\) (\(\widehat{BAC}\) + \(\widehat{BCA}\))

=> \(\widehat{IAC}\) + \(\widehat{ICA}\) = \(\frac{1}{2}\). 120o = 60o

Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{IAC}\) + \(\widehat{ICA}\) + \(\widehat{AIC}\) = 180o

=> \(\widehat{AIC}\) = 180o - ( \(\widehat{IAC}\) + \(\widehat{ICA}\))

=> \(\widehat{AIC}\) = 180o - 60o = 120o

b) Nối B với I

Kẻ IE \(\perp\) BC; IH \(\perp\) AB và ID \(\perp\) AC

Ta có: \(\widehat{AIC}\) = \(\widehat{QIP}\) = 120o (đối đỉnh)

Áp dụng tc tgv ta có:

\(\widehat{BIH}\) + \(\widehat{HBI}\) = 90o

\(\widehat{BIE}\) + \(\widehat{IBE}\) = 90o

=> \(\widehat{BIH}\) + \(\widehat{HBI}\) + \(\widehat{BIE}\) + \(\widehat{IBE}\) = 180o

=> (\(\widehat{HBI}\) + \(\widehat{IBE}\)) + (\(\widehat{BIH}\) + \(\widehat{BIE}\)) = 180o

=> \(\widehat{ABC}\) + (\(\widehat{BIH}\) + \(\widehat{BIE}\)) = 180o

=> 60o + \(\widehat{HIE}\) = 180

=> \(\widehat{HIE}\) = 120o

=> \(\widehat{QIP}\) = \(\widehat{HIE}\)

Lại có: \(\widehat{QIE}\) + \(\widehat{EIP}\) = \(\widehat{QIP}\)

\(\widehat{QIE}\) + \(\widehat{QIH}\) = \(\widehat{HIE}\)
\(\widehat{QIP}\) = \(\widehat{HIE}\) => \(\widehat{EIP}\) = \(\widehat{QIH}\)
Xét \(\Delta\)HIA vuông tại H và \(\Delta\)DIA vuông tại D có:
IA chung
\(\widehat{HAI}\) = \(\widehat{DAI}\) (tia pg)
=> \(\Delta\)HIA = \(\Delta\)DIA (ch - gn)
=> HI = DI (2 cạnh t/ư) (1)
Tương tự: \(\Delta\)EIC = \(\Delta\)DIC (ch - gn)
=> EI = DI (2 cạnh t/ư) (2)
Từ (1) và (2) suy ra HI = EI.
Xét \(\Delta\)QIH vuông tại H và \(\Delta\)PIE vuông tại E có:
HI = IE (c/m trên)
\(\widehat{EIP}\) = \(\widehat{QIH}\) (c/m trên)
=> \(\Delta\)QIH = \(\Delta\)PIE (ch - gn)
=> QI = PI (2 cạnh t/ư)

11 tháng 1 2018

Trên tia đối của tia AC lấy N sao cho CN=BC
=> Δ DNC = Δ DBC
=> DN=DB
Lại có Δ NCB cân tại C (CN=CB)

=> góc NBC = 60°

=> Δ BDN đều.
Vì Δ ADI = Δ ANI

=> góc AND và góc ADN = 10°

=> góc ADB = 70°

12 tháng 5 2017

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

12 tháng 5 2017

mình lên rồi nhưng ko có

LƯU Ý: MÌNH KHÔNG BIẾT VẼ HÌNH NÊN BẠN VẼ NHÉ 

Bài 1: DỰNG TAM GIÁC ĐỀU MBC ( M;A nằm trên cùng một nửa mặt phẳng bờ BC)

Xét tam giác MAB và tam giác MAC 

     MB=MC(tam giác MBC đều)

     Chung MA

     AB=AC(tam giác ABC cân tại A)

=> Tam giác MAB= tam giác MBC => góc BMA= góc CMA

=> góc BMA=30 độ

Xét tam giác BMA và tam giác BCD 

     góc BMA=BCD(=30)

     BM=BC(tam giác MBC đều)

     goc MBA=CBD(=10) (CHỖ NÀY BẠN KHÔNG HIỂU HỎI MK NHÉ )

=> tam giac BMA=BCD=>AB=DB=> tam giac BAD cân tại B . Lại có DBM=40

=> BAD=(180-40)/2=70

     

Bài 2: Dựng tam giác đều BCI( I;A cùng phía so với BC)

Xét tam giác BIA và tam giác CIA

     AB=AC ( ABC cân tại A)

     ABI=ACI(=10)

     BI=CI(do BIC đều)

=> tam giác BIA=CIA =>góc BAI=CAI=40/2=20

Tương tự ta chứng minh được tam giác ABI = tam giác DBC(c.g.c) ( NẾU HỎI MK SẼ NHẮN TRONG PHÂN CHAT)

Do đó BAI=BDC hay BDC=20

27 tháng 2 2017

mình chịu