K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2017

Bài 1:

Gọi độ dài của 3 cạnh tam giác là \(x;y;z\) \(\left(x;y;z>0;x:y:z=2:3:4\right)\) và ba chiều cao tương ứng là \(a;b;c\)

Đặt: \(x=2.t\)

\(y=3.t\)

\(z=4.t\)

Gọi S là diện tích của tam giác đó.

\(2S=x.a=y.b=z.c\)

\(\Rightarrow a.2.t=b.3.t=c.4.t\)

\(\Rightarrow2.a=3.b=c.4\)

\(\Rightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)

Vậy 3 chiều cao tương ứng với 3 cạnh tỉ lệ với: \(6;4;3\)

19 tháng 1 2017

Bài 2:

Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{ABC}\) + \(\widehat{BAC}\) + \(\widehat{BCA}\) = 180o

=> \(\widehat{BAC}\) + \(\widehat{BCA}\) = 180o - \(\widehat{ABC}\)

=> \(\widehat{BAC}\) + \(\widehat{BCA}\) = 180o - 60o

=> \(\widehat{BAC}\) + \(\widehat{BCA}\) = 120o

Ta có: \(\widehat{IAC}\) = \(\frac{1}{2}\) \(\widehat{BAC}\) (AI là tia pg)

\(\widehat{ICA}\) = \(\frac{1}{2}\) \(\widehat{BCA}\) (CI là tia pg)

=> \(\widehat{IAC}\) + \(\widehat{ICA}\) = \(\frac{1}{2}\) \(\widehat{BAC}\) + \(\frac{1}{2}\) \(\widehat{BCA}\)

=> \(\widehat{IAC}\) + \(\widehat{ICA}\) = \(\frac{1}{2}\) (\(\widehat{BAC}\) + \(\widehat{BCA}\))

=> \(\widehat{IAC}\) + \(\widehat{ICA}\) = \(\frac{1}{2}\). 120o = 60o

Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{IAC}\) + \(\widehat{ICA}\) + \(\widehat{AIC}\) = 180o

=> \(\widehat{AIC}\) = 180o - ( \(\widehat{IAC}\) + \(\widehat{ICA}\))

=> \(\widehat{AIC}\) = 180o - 60o = 120o

b) Nối B với I

Kẻ IE \(\perp\) BC; IH \(\perp\) AB và ID \(\perp\) AC

Ta có: \(\widehat{AIC}\) = \(\widehat{QIP}\) = 120o (đối đỉnh)

Áp dụng tc tgv ta có:

\(\widehat{BIH}\) + \(\widehat{HBI}\) = 90o

\(\widehat{BIE}\) + \(\widehat{IBE}\) = 90o

=> \(\widehat{BIH}\) + \(\widehat{HBI}\) + \(\widehat{BIE}\) + \(\widehat{IBE}\) = 180o

=> (\(\widehat{HBI}\) + \(\widehat{IBE}\)) + (\(\widehat{BIH}\) + \(\widehat{BIE}\)) = 180o

=> \(\widehat{ABC}\) + (\(\widehat{BIH}\) + \(\widehat{BIE}\)) = 180o

=> 60o + \(\widehat{HIE}\) = 180

=> \(\widehat{HIE}\) = 120o

=> \(\widehat{QIP}\) = \(\widehat{HIE}\)

Lại có: \(\widehat{QIE}\) + \(\widehat{EIP}\) = \(\widehat{QIP}\)

\(\widehat{QIE}\) + \(\widehat{QIH}\) = \(\widehat{HIE}\)
\(\widehat{QIP}\) = \(\widehat{HIE}\) => \(\widehat{EIP}\) = \(\widehat{QIH}\)
Xét \(\Delta\)HIA vuông tại H và \(\Delta\)DIA vuông tại D có:
IA chung
\(\widehat{HAI}\) = \(\widehat{DAI}\) (tia pg)
=> \(\Delta\)HIA = \(\Delta\)DIA (ch - gn)
=> HI = DI (2 cạnh t/ư) (1)
Tương tự: \(\Delta\)EIC = \(\Delta\)DIC (ch - gn)
=> EI = DI (2 cạnh t/ư) (2)
Từ (1) và (2) suy ra HI = EI.
Xét \(\Delta\)QIH vuông tại H và \(\Delta\)PIE vuông tại E có:
HI = IE (c/m trên)
\(\widehat{EIP}\) = \(\widehat{QIH}\) (c/m trên)
=> \(\Delta\)QIH = \(\Delta\)PIE (ch - gn)
=> QI = PI (2 cạnh t/ư)

2 tháng 2 2017

Bài 1 : Bn tự vẽ hình nhé:

Xét tam giác ABC cân tại A có :

<B=<C mà <C=20  độ nên góc B =20 độ

Ta có : <CBD+<DBA=<B

          10 độ+<DBA=20 độ

         <DBA=10 độ 

xét tam giác ABD có

từ đó bn tự làm và tà tính đc <ADB=70 độ

19 tháng 1 2017

B 60 A C D P E Q H I

Bài 2:

Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{ABC}\) + \(\widehat{BAC}\) + \(\widehat{BCA}\) = 180o

=> \(\widehat{BAC}\) + \(\widehat{BCA}\) = 180o - \(\widehat{ABC}\)

=> \(\widehat{BAC}\) + \(\widehat{BCA}\) = 180o - 60o

=> \(\widehat{BAC}\) + \(\widehat{BCA}\) = 120o

Ta có: \(\widehat{IAC}\) = \(\frac{1}{2}\) \(\widehat{BAC}\) (AI là tia pg)

\(\widehat{ICA}\) = \(\frac{1}{2}\) \(\widehat{BCA}\) (CI là tia pg)

=> \(\widehat{IAC}\) + \(\widehat{ICA}\) = \(\frac{1}{2}\) \(\widehat{BAC}\) + \(\frac{1}{2}\) \(\widehat{BCA}\)

=> \(\widehat{IAC}\) + \(\widehat{ICA}\) = \(\frac{1}{2}\) (\(\widehat{BAC}\) + \(\widehat{BCA}\))

=> \(\widehat{IAC}\) + \(\widehat{ICA}\) = \(\frac{1}{2}\). 120o = 60o

Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{IAC}\) + \(\widehat{ICA}\) + \(\widehat{AIC}\) = 180o

=> \(\widehat{AIC}\) = 180o - ( \(\widehat{IAC}\) + \(\widehat{ICA}\))

=> \(\widehat{AIC}\) = 180o - 60o = 120o

b) Nối B với I

Kẻ IE \(\perp\) BC; IH \(\perp\) AB và ID \(\perp\) AC

Ta có: \(\widehat{AIC}\) = \(\widehat{QIP}\) = 120o (đối đỉnh)

Áp dụng tc tgv ta có:

\(\widehat{BIH}\) + \(\widehat{HBI}\) = 90o

\(\widehat{BIE}\) + \(\widehat{IBE}\) = 90o

=> \(\widehat{BIH}\) + \(\widehat{HBI}\) + \(\widehat{BIE}\) + \(\widehat{IBE}\) = 180o

=> (\(\widehat{HBI}\) + \(\widehat{IBE}\)) + (\(\widehat{BIH}\) + \(\widehat{BIE}\)) = 180o

=> \(\widehat{ABC}\) + (\(\widehat{BIH}\) + \(\widehat{BIE}\)) = 180o

=> 60o + \(\widehat{HIE}\) = 180

=> \(\widehat{HIE}\) = 120o

=> \(\widehat{QIP}\) = \(\widehat{HIE}\)

Lại có: \(\widehat{QIE}\) + \(\widehat{EIP}\) = \(\widehat{QIP}\)

\(\widehat{QIE}\) + \(\widehat{QIH}\) = \(\widehat{HIE}\)
\(\widehat{QIP}\) = \(\widehat{HIE}\) => \(\widehat{EIP}\) = \(\widehat{QIH}\)
Xét \(\Delta\)HIA vuông tại H và \(\Delta\)DIA vuông tại D có:
IA chung
\(\widehat{HAI}\) = \(\widehat{DAI}\) (tia pg)
=> \(\Delta\)HIA = \(\Delta\)DIA (ch - gn)
=> HI = DI (2 cạnh t/ư) (1)
Tương tự: \(\Delta\)EIC = \(\Delta\)DIC (ch - gn)
=> EI = DI (2 cạnh t/ư) (2)
Từ (1) và (2) suy ra HI = EI.
Xét \(\Delta\)QIH vuông tại H và \(\Delta\)PIE vuông tại E có:
HI = IE (c/m trên)
\(\widehat{EIP}\) = \(\widehat{QIH}\) (c/m trên)
=> \(\Delta\)QIH = \(\Delta\)PIE (ch - gn)
=> QI = PI (2 cạnh t/ư)
28 tháng 9 2020

ch-gn là j vậy bạn Hoàng Thị Ngọc Anh

12 tháng 5 2017

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

12 tháng 5 2017

mình lên rồi nhưng ko có

1. Tìm các số tự nhiên a, b, c khác 0 thỏa mãn:\(\frac{28}{29}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< 1.\)2. Chứng minh rằng trọng tâm, trực tâm và tâm đường tròn nội tiếp (giao điểm của 3 đường trung trực) trong một tam giác thẳng hàng.3. chứng minh rằng nếu a,b,c là các số hửu tỉ thì \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hửu tỉ.4.Cho tam giác ABC có \(\widehat{A}=30^0\), BC=2cm. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

1. Tìm các số tự nhiên a, b, c khác 0 thỏa mãn:\(\frac{28}{29}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< 1.\)

2. Chứng minh rằng trọng tâm, trực tâm và tâm đường tròn nội tiếp (giao điểm của 3 đường trung trực) trong một tam giác thẳng hàng.

3. chứng minh rằng nếu a,b,c là các số hửu tỉ thì \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hửu tỉ.

4.Cho tam giác ABC có \(\widehat{A}=30^0\), BC=2cm. Trên cạnh AC lấy điểm D sao cho \(\widehat{CBD}=60^0\). Tính độ dài AD.

5. Tìm các số a,b sao cho 2007ab là bình phương của số tự nhiên.

6. Cho tam giác ABC vuông tại A, đường cao AH. Gọi M,N lần lượt là trung điểm của AH và BH. Chứng minh rằng \(CM\perp AN\)

7. Chứng minh rằng: \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{100}}>10\)

8. Cho tam giác ABC, H là trực tâm, O là tâm đường tròn đi qua ba đỉnh của tam giác. Chứng minh rằng khoảng cách từ O đến một cạnh của tam giác bằng một nửa khoảng cách từ H đến đỉnh đối diện.

9. Tìm x,y,z biết: \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

10. Độ dài ba cạnh của 1 tam giác tỉ lệ với 2;3;4. Hỏi ba chiều cao tương ứng của tam giác đó tỉ lệ với ba số nào?

2
11 tháng 4 2018

Bài 7 : 

( bạn đạt A = (...) cái biểu thức đấy nhé, tự đặt ) 

Ta có : 

\(\frac{1}{\sqrt{1}}=\frac{1}{1}>\frac{1}{10}=\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)

\(............\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

\(\Rightarrow\)\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)

\(A>\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)

\(\Rightarrow\)\(A>10\)

Vậy \(A>10\)

Chúc bạn học tốt ~ 

11 tháng 4 2018

Bạn làm được mình bài 7 thôi à, mình thấy bạn giỏi lắm mà. Mình có tới mấy chục bài cần giải cơ. Dạo này mình hỏi nhiều vì sắp đi thi.

21 tháng 10 2016

giúp mình vs mình cũng cần

21 tháng 10 2016

1 a,Ta có ∆ ABC= ∆ HIK, nên cạnh tương ứng với BC là cạnh IK

góc tương ứng với góc H là góc A.

ta có : ∆ ABC= ∆ HIK

Suy ra: AB=HI, AC=HK, BC=IK.

=, =,=.

b,

∆ ABC= ∆HIK

Suy ra: AB=HI=2cm, BC=IK=6cm, ==400

2.

Ta có ∆ABC= ∆ DEF

Suy ra: AB=DE=4cm, BC=EF=6cm, DF=AC=5cm.

Chu vi của tam giác ABC bằng: AB+BC+AC= 4+5+6=15 (cm)

Chu vi của tam giác DEF bằng: DE+EF+DF= 4+5+6=15 (cm


 

25 tháng 2 2017

\(\left(1000-1^3\right)\left(1000-2^3\right).....\left(1000-50^3\right)\)

\(=\left(1000-1^3\right)\left(1000-2^3\right).....\left(1000-10^3\right).....\left(1000-50^3\right)\)

\(=\left(1000-1^3\right)\left(1000-2^3\right)....\left(1000-1000\right)....\left(1000-50^3\right)\)

\(=0\)

15 tháng 12 2016

gọi 3 cạnh của Δlà a,b,c (a,b,c >0)

3 chiều cao của Δ là x,y,z (x,y,z>0)

ta có : \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)

đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\left(k>0\right)\)

\(\Rightarrow\)a=2k ;b=3k ; c=4k

ta có : 2S=a.x=b.y=c.z=2k.x=3k.y=4k.z ( S là diện tích )

\(\Rightarrow2x=3y=4z\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

vậy 3 chiều cao tương ứng tỉ lệ vs 6;4;3

17 tháng 12 2016

cho mk hỏi là tại sao từ 2x=3y=4z=>đc2x/12=3y/12=4z/12 zậy bn