Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Gọi độ dài của 3 cạnh tam giác là \(x;y;z\) \(\left(x;y;z>0;x:y:z=2:3:4\right)\) và ba chiều cao tương ứng là \(a;b;c\)
Đặt: \(x=2.t\)
\(y=3.t\)
\(z=4.t\)
Gọi S là diện tích của tam giác đó.
\(2S=x.a=y.b=z.c\)
\(\Rightarrow a.2.t=b.3.t=c.4.t\)
\(\Rightarrow2.a=3.b=c.4\)
\(\Rightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)
Vậy 3 chiều cao tương ứng với 3 cạnh tỉ lệ với: \(6;4;3\)
Bài 2:
Áp dụng tc tổng 3 góc trong 1 tg ta có:
\(\widehat{ABC}\) + \(\widehat{BAC}\) + \(\widehat{BCA}\) = 180o
=> \(\widehat{BAC}\) + \(\widehat{BCA}\) = 180o - \(\widehat{ABC}\)
=> \(\widehat{BAC}\) + \(\widehat{BCA}\) = 180o - 60o
=> \(\widehat{BAC}\) + \(\widehat{BCA}\) = 120o
Ta có: \(\widehat{IAC}\) = \(\frac{1}{2}\) \(\widehat{BAC}\) (AI là tia pg)
\(\widehat{ICA}\) = \(\frac{1}{2}\) \(\widehat{BCA}\) (CI là tia pg)
=> \(\widehat{IAC}\) + \(\widehat{ICA}\) = \(\frac{1}{2}\) \(\widehat{BAC}\) + \(\frac{1}{2}\) \(\widehat{BCA}\)
=> \(\widehat{IAC}\) + \(\widehat{ICA}\) = \(\frac{1}{2}\) (\(\widehat{BAC}\) + \(\widehat{BCA}\))
=> \(\widehat{IAC}\) + \(\widehat{ICA}\) = \(\frac{1}{2}\). 120o = 60o
Áp dụng tc tổng 3 góc trong 1 tg ta có:
\(\widehat{IAC}\) + \(\widehat{ICA}\) + \(\widehat{AIC}\) = 180o
=> \(\widehat{AIC}\) = 180o - ( \(\widehat{IAC}\) + \(\widehat{ICA}\))
=> \(\widehat{AIC}\) = 180o - 60o = 120o
b) Nối B với I
Kẻ IE \(\perp\) BC; IH \(\perp\) AB và ID \(\perp\) AC
Ta có: \(\widehat{AIC}\) = \(\widehat{QIP}\) = 120o (đối đỉnh)
Áp dụng tc tgv ta có:
\(\widehat{BIH}\) + \(\widehat{HBI}\) = 90o
\(\widehat{BIE}\) + \(\widehat{IBE}\) = 90o
=> \(\widehat{BIH}\) + \(\widehat{HBI}\) + \(\widehat{BIE}\) + \(\widehat{IBE}\) = 180o
=> (\(\widehat{HBI}\) + \(\widehat{IBE}\)) + (\(\widehat{BIH}\) + \(\widehat{BIE}\)) = 180o
=> \(\widehat{ABC}\) + (\(\widehat{BIH}\) + \(\widehat{BIE}\)) = 180o
=> 60o + \(\widehat{HIE}\) = 180
=> \(\widehat{HIE}\) = 120o
=> \(\widehat{QIP}\) = \(\widehat{HIE}\)
Lại có: \(\widehat{QIE}\) + \(\widehat{EIP}\) = \(\widehat{QIP}\)
Hình các bạn tự vẽ nhé mình sẽ làm cho phần nội dung !!!!
Ta có \(:\widehat{ABC}+\widehat{BAC}+\widehat{ACB}=180^o\)(Tổng 3 góc của tam giác)
Mà \(\widehat{ABC}=60^o\Rightarrow\widehat{BAC}+\widehat{ACB}=180^o-\widehat{ABC}=180^o-60^o=120^o\)
Vì \(AI\)là phân giác của \(\widehat{BAC}\Rightarrow\widehat{BAI}=\widehat{CAI}=\frac{\widehat{BAC}}{2}\) (1)
Vì \(CI\)là phân giác của \(\widehat{ACB}\Rightarrow\widehat{BCI}=\widehat{ACI}=\frac{\widehat{ACB}}{2}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{IAC}+\widehat{ICA}=\frac{\widehat{BAC}+\widehat{ACB}}{2}=\frac{120^o}{2}=60^o\)
Ta có \(\widehat{IAC}+\widehat{ICA}+\widehat{AIC}=180^o\)(Tổng 3 góc của tam giác)
Mà \(\widehat{IAC}+\widehat{ICA}=60^o\Rightarrow\widehat{AIC}=180^o-\widehat{IAC}+\widehat{ICA}=180^o-60^o=120^o\)
Vậy \(\widehat{AIC}=120^o\)
Xét \(\Delta AIC\)và\(\Delta ABC\)Ta có : \(\frac{A}{2}+\frac{C}{2}+I=A+B+C=180^0\)
\(=>A+B+C-\frac{A}{2}-\frac{C}{2}-I=0\)
\(=>\frac{A}{2}+\frac{C}{2}+B-I=0\)
Vì \(\frac{A}{2}+\frac{B}{2}+\frac{C}{2}=90^0\)(Nửa tam giác)
\(=>\frac{A}{2}+\frac{C}{2}+\frac{B}{2}+\frac{B}{2}-I=0\)
\(=>90^0+30^0=I\)
\(=>I=120^0\)Hay \(AIC=120^0\)
B 60 A C D P E Q H I
Bài 2:
Áp dụng tc tổng 3 góc trong 1 tg ta có:
\(\widehat{ABC}\) + \(\widehat{BAC}\) + \(\widehat{BCA}\) = 180o
=> \(\widehat{BAC}\) + \(\widehat{BCA}\) = 180o - \(\widehat{ABC}\)
=> \(\widehat{BAC}\) + \(\widehat{BCA}\) = 180o - 60o
=> \(\widehat{BAC}\) + \(\widehat{BCA}\) = 120o
Ta có: \(\widehat{IAC}\) = \(\frac{1}{2}\) \(\widehat{BAC}\) (AI là tia pg)
\(\widehat{ICA}\) = \(\frac{1}{2}\) \(\widehat{BCA}\) (CI là tia pg)
=> \(\widehat{IAC}\) + \(\widehat{ICA}\) = \(\frac{1}{2}\) \(\widehat{BAC}\) + \(\frac{1}{2}\) \(\widehat{BCA}\)
=> \(\widehat{IAC}\) + \(\widehat{ICA}\) = \(\frac{1}{2}\) (\(\widehat{BAC}\) + \(\widehat{BCA}\))
=> \(\widehat{IAC}\) + \(\widehat{ICA}\) = \(\frac{1}{2}\). 120o = 60o
Áp dụng tc tổng 3 góc trong 1 tg ta có:
\(\widehat{IAC}\) + \(\widehat{ICA}\) + \(\widehat{AIC}\) = 180o
=> \(\widehat{AIC}\) = 180o - ( \(\widehat{IAC}\) + \(\widehat{ICA}\))
=> \(\widehat{AIC}\) = 180o - 60o = 120o
b) Nối B với I
Kẻ IE \(\perp\) BC; IH \(\perp\) AB và ID \(\perp\) AC
Ta có: \(\widehat{AIC}\) = \(\widehat{QIP}\) = 120o (đối đỉnh)
Áp dụng tc tgv ta có:
\(\widehat{BIH}\) + \(\widehat{HBI}\) = 90o
\(\widehat{BIE}\) + \(\widehat{IBE}\) = 90o
=> \(\widehat{BIH}\) + \(\widehat{HBI}\) + \(\widehat{BIE}\) + \(\widehat{IBE}\) = 180o
=> (\(\widehat{HBI}\) + \(\widehat{IBE}\)) + (\(\widehat{BIH}\) + \(\widehat{BIE}\)) = 180o
=> \(\widehat{ABC}\) + (\(\widehat{BIH}\) + \(\widehat{BIE}\)) = 180o
=> 60o + \(\widehat{HIE}\) = 180
=> \(\widehat{HIE}\) = 120o
=> \(\widehat{QIP}\) = \(\widehat{HIE}\)
Lại có: \(\widehat{QIE}\) + \(\widehat{EIP}\) = \(\widehat{QIP}\)
ch-gn là j vậy bạn Hoàng Thị Ngọc Anh