K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2017

Bài 1 : Bn tự vẽ hình nhé:

Xét tam giác ABC cân tại A có :

<B=<C mà <C=20  độ nên góc B =20 độ

Ta có : <CBD+<DBA=<B

          10 độ+<DBA=20 độ

         <DBA=10 độ 

xét tam giác ABD có

từ đó bn tự làm và tà tính đc <ADB=70 độ

22 tháng 11 2016

Cho mình hỏi số 12 ở phần 2a/12=3b/12=4c/12 là lấy ở đâu vậy?

Gọi độ dài 3 cạnh đó là: a,b,c có: a : b : c =2 : 3 : 4

Đặt \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=k\left(k>0\right)\)

=>\(a=2k;b=3k;c=4k\)

Gọi chiều cao tương ứng với 3 cạnh là: ha;hb;hc

Ta có: \(\dfrac{1}{2}\cdot a\cdot h_a=\dfrac{1}{2}b\cdot h_b=\dfrac{1}{2}c\cdot h_c=\dfrac{1}{2}2k\cdot h_a=\dfrac{1}{2}3k\cdot h_b=\dfrac{1}{2}4k\cdot h_c\Leftrightarrow2h_a=3h_b=4h_c\) =>\(\dfrac{\dfrac{h_a}{1}}{2}=\dfrac{h_b}{\dfrac{1}{3}}=\dfrac{h_c}{\dfrac{1}{4}}\)

Vậy chiều cao tương ứng với 3 cạnh tam là: \(\dfrac{1}{2};\dfrac{1}{3};\dfrac{1}{4}\)

24 tháng 7 2023

Gọi độ dài 3 cạnh đó là: a,b,c có: a : b : c =2 : 3 : 4

Đặt �2=�3=�4=�(�>0)

=>�=2�;�=3�;�=4�

Gọi chiều cao tương ứng với 3 cạnh là: ha;hb;hc

Ta có: 12⋅�⋅ℎ�=12�⋅ℎ�=12�⋅ℎ�=122�⋅ℎ�=123�⋅ℎ�=124�⋅ℎ�⇔2ℎ�=3ℎ�=4ℎ� =>ℎ�12=ℎ�13=ℎ�14

Vậy chiều cao tương ứng với 3 cạnh tam là: 12;13;14
 

18 tháng 1 2017

Bài 1:

Gọi độ dài của 3 cạnh tam giác là \(x;y;z\) \(\left(x;y;z>0;x:y:z=2:3:4\right)\) và ba chiều cao tương ứng là \(a;b;c\)

Đặt: \(x=2.t\)

\(y=3.t\)

\(z=4.t\)

Gọi S là diện tích của tam giác đó.

\(2S=x.a=y.b=z.c\)

\(\Rightarrow a.2.t=b.3.t=c.4.t\)

\(\Rightarrow2.a=3.b=c.4\)

\(\Rightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)

Vậy 3 chiều cao tương ứng với 3 cạnh tỉ lệ với: \(6;4;3\)

19 tháng 1 2017

Bài 2:

Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{ABC}\) + \(\widehat{BAC}\) + \(\widehat{BCA}\) = 180o

=> \(\widehat{BAC}\) + \(\widehat{BCA}\) = 180o - \(\widehat{ABC}\)

=> \(\widehat{BAC}\) + \(\widehat{BCA}\) = 180o - 60o

=> \(\widehat{BAC}\) + \(\widehat{BCA}\) = 120o

Ta có: \(\widehat{IAC}\) = \(\frac{1}{2}\) \(\widehat{BAC}\) (AI là tia pg)

\(\widehat{ICA}\) = \(\frac{1}{2}\) \(\widehat{BCA}\) (CI là tia pg)

=> \(\widehat{IAC}\) + \(\widehat{ICA}\) = \(\frac{1}{2}\) \(\widehat{BAC}\) + \(\frac{1}{2}\) \(\widehat{BCA}\)

=> \(\widehat{IAC}\) + \(\widehat{ICA}\) = \(\frac{1}{2}\) (\(\widehat{BAC}\) + \(\widehat{BCA}\))

=> \(\widehat{IAC}\) + \(\widehat{ICA}\) = \(\frac{1}{2}\). 120o = 60o

Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{IAC}\) + \(\widehat{ICA}\) + \(\widehat{AIC}\) = 180o

=> \(\widehat{AIC}\) = 180o - ( \(\widehat{IAC}\) + \(\widehat{ICA}\))

=> \(\widehat{AIC}\) = 180o - 60o = 120o

b) Nối B với I

Kẻ IE \(\perp\) BC; IH \(\perp\) AB và ID \(\perp\) AC

Ta có: \(\widehat{AIC}\) = \(\widehat{QIP}\) = 120o (đối đỉnh)

Áp dụng tc tgv ta có:

\(\widehat{BIH}\) + \(\widehat{HBI}\) = 90o

\(\widehat{BIE}\) + \(\widehat{IBE}\) = 90o

=> \(\widehat{BIH}\) + \(\widehat{HBI}\) + \(\widehat{BIE}\) + \(\widehat{IBE}\) = 180o

=> (\(\widehat{HBI}\) + \(\widehat{IBE}\)) + (\(\widehat{BIH}\) + \(\widehat{BIE}\)) = 180o

=> \(\widehat{ABC}\) + (\(\widehat{BIH}\) + \(\widehat{BIE}\)) = 180o

=> 60o + \(\widehat{HIE}\) = 180

=> \(\widehat{HIE}\) = 120o

=> \(\widehat{QIP}\) = \(\widehat{HIE}\)

Lại có: \(\widehat{QIE}\) + \(\widehat{EIP}\) = \(\widehat{QIP}\)

\(\widehat{QIE}\) + \(\widehat{QIH}\) = \(\widehat{HIE}\)\(\widehat{QIP}\) = \(\widehat{HIE}\) => \(\widehat{EIP}\) = \(\widehat{QIH}\) Xét \(\Delta\)HIA vuông tại H và \(\Delta\)DIA vuông tại D có: IA chung \(\widehat{HAI}\) = \(\widehat{DAI}\) (tia pg) => \(\Delta\)HIA = \(\Delta\)DIA (ch - gn) => HI = DI (2 cạnh t/ư) (1) Tương tự: \(\Delta\)EIC = \(\Delta\)DIC (ch - gn) => EI = DI (2 cạnh t/ư) (2) Từ (1) và (2) suy ra HI = EI. Xét \(\Delta\)QIH vuông tại H và \(\Delta\)PIE vuông tại E có: HI = IE (c/m trên) \(\widehat{EIP}\) = \(\widehat{QIH}\) (c/m trên) => \(\Delta\)QIH = \(\Delta\)PIE (ch - gn) => QI = PI (2 cạnh t/ư)

Bai 1:Cho tam giác ABC có AB<AC,AB=b,AC=c. Qua M là trung điểm của BC kẻ đường vuông góc với phân giác của góc A, cắt các đường AB, AC lần lượt tại D,E1, C/m BD=CE2, Tính AD&BD theo b,cBài 2:Cho \(\Delta ABC\)cân tại A,\(\widehat{BAC}\)=100\(^0\).D là điểm thuộc miền trong của tam giác ABC sao cho góc DBC=10 độ. Góc DCB=20độ.Tinh góc ADBBài...
Đọc tiếp

Bai 1:Cho tam giác ABC có AB<AC,AB=b,AC=c. Qua M là trung điểm của BC kẻ đường vuông góc với phân giác của góc A, cắt các đường AB, AC lần lượt tại D,E

1, C/m BD=CE

2, Tính AD&BD theo b,c

Bài 2:Cho \(\Delta ABC\)cân tại A,\(\widehat{BAC}\)=100\(^0\).D là điểm thuộc miền trong của tam giác ABC sao cho góc DBC=10 độ. Góc DCB=20độ.

Tinh góc ADB

Bài 3:Tính 

\(\frac{9}{10}-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)

Bài 4:

Cho\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)và a+b+c\(\ne0\); a=2005

Tính b,c

Bài 5:

Chứng minh rằng hệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)thì ta có hệ thức\(\frac{a}{b}=\frac{c}{d}\)

Bài 6:

Vẽ đồ thị hàm số

\(y=\hept{\begin{cases}2x;x\ge0\\x,x< 0\end{cases}}\)

Bài 7: Độ dài cạnh của tam giác ứng với tỉ lệ 2,3,4. Ba chiều cao tương ứng với 3 cạnh đó tỉ lệ với những số nào?

Cứu mình với thầy chủ nhiệm giao bài "dễ"quá mình cảm động tới rớt nước mắt òi. Vắt não từ hôm qua tới giờ mới làm được mấy bài dễ.T^T T^T T^T T^T

1
1 tháng 5 2018

4/

Ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

=> a = b = c = 2005