K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

-Vì tất cả các số chẵn khác đều chia hết cho 2.Nói cách khác, các số chẵn khác đều có ba ước trở lên( gồm 2, chính nó và 1)

19 tháng 10 2017

- Số 2 chỉ có hai ước duy nhất là 1 và chính nó
- Các số chẵn đều chia hết cho 2, nhưng 2:2 =1 (Ước là 1)

14 tháng 10 2015

a) 23.k có ít nhất các ước là 23;k;1

23.k là số nguyên tố nếu nó chỉ có 2 ước là 1 và chính nó (là 23.k)

=> 23.k = 23 => k = 1

Vậy...

b) 2 chỉ có 2 ước là  1 và 2 nên 2 là số nguyên tố

các số chẵn lớn hơn 2 có ít nhất 3 ước là 1;2;và chính nó nên không thể là số nguyên tố

Vậy 2 là số nguyên tố chẵn duy nhất

 

8 tháng 11 2017

Có 2 số nguyên tố cùng nhau mà cả hai đều là hợp số

VD: 14 và 15 đều là hợp số

14=3.4

15=3.5

UCLN(14;15)=1

vậy 14 và 15 là 2 số nguyên tố cùng nhau

8 tháng 11 2017

đã là 2 số nguyên tố mà còn là hợp số???

25 tháng 12 2023

Olm.vn sẽ hướng dẫn em giải bằng phương pháp đánh giá em nhé!

Nếu p = 2 \(\Rightarrow\) 2p2 + 1 = 2.22 + 1  = 9 (nhận)

Nếu p = 3 ⇒ 2p2 + 1 = 2.32 + 1 = 19 (loại)

Nếu p > 3 ⇒ p không chia hết cho 3 ⇒ p2 chia 3 dư 1

⇒ 2p2 : 3 dư 2 ⇒ 2p2 + 1 ⋮ 3 (nhận)

Từ những lập luận trên ta có 

        \(\forall\) p \(\ne\)  3; p \(\in\) P thì 2p2 + 1 là hợp số

b,  p + 4 và p + 8 đều là số nguyên tố.

      Nếu p = 2 thì p + 4 =  2 + 4 = 6 loại

     Nếu p  = 3 thì p + 4 = 3 + 4  = 7; p + 8 = 3 + 8  = 11 (nhận)

     Nếu p > 3 ta có: p  không chia hết cho 3 ⇒ p = 3k + 1

     hoặc p = 3k + 2

    th1 : p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 ⋮ 3 (loại)

   th2:  p = 3k + 2  thì p + 4 = 3k + 2 + 4 = 3k + 6 ⋮ 3 (loại)

Từ những lập luận trên ta có p = 3 là giá trị thỏa mãn đề bài

 

24 tháng 12 2016

p nguyên tố => 8p không chia hết cho 3(*)

(8p-1), (8p), (8p+1) là ba số tự nhiên liên tiếp => phải có 1 số chia hết cho 3

mà 8p (*) => (8p-1), (8p+1) phải có 1 số chia hết cho 3=> dpcm

20 tháng 11 2017

1.(cái cho p và p+20..) 

  p là số nguyên tố và p> 3 => p=3k+1 hoặc p=3k+2

 Nếu p=3k+1=> p+20=3k+1+20=3k+21 chia hết cho 3 (loại) vì  p+20 phải là snt

Nếu p=3k+2 =>p+20=3k+2+20=3k+22 không chia hết cho 3 (chọn)

 p+25=3k+2+25=3k+27 chia hết cho 3

Nên p+25 là hợp số