K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2015

a) 23.k có ít nhất các ước là 23;k;1

23.k là số nguyên tố nếu nó chỉ có 2 ước là 1 và chính nó (là 23.k)

=> 23.k = 23 => k = 1

Vậy...

b) 2 chỉ có 2 ước là  1 và 2 nên 2 là số nguyên tố

các số chẵn lớn hơn 2 có ít nhất 3 ước là 1;2;và chính nó nên không thể là số nguyên tố

Vậy 2 là số nguyên tố chẵn duy nhất

 

31 tháng 10 2017

a) k=1 vì 23 là số nguyên tố.

b)vì các số chẵn còn lại đều chia hết cho 2.

31 tháng 10 2017

Số 2 là số chẵn duy nhất là vì số 0 : và 1 ko phải là hợp số hay số nguyên tố nên chỉ có 2 mới là số nguyên tố chẵn duy nhất 

22 tháng 7 2016

a) + Với k = 0 thì 23.k = 23.0 = 0, không là số nguyên tố, loại

+ Với k = 1 thì 23.k = 23.1 = 23, là số nguyên tố, chọn

+ Với k > 1 thì 23k có ít nhất 3 ước là: 1; 23 và k, không là số nguyên tố, loại

Vậy k = 1

b) 2 là số nguyên tố chẵn duy nhất vì:

+ 2 chỉ có 2 ước là 1 và chính nó

+ Nếu tồn tại 1 số nguyên tố chẵn > 2 thì số đó có ít nhất 3 ước là: 1; 2 và chính nó, vô lí

23 tháng 10 2015

Câu 1 :nếu k=0 thì 23k=0 ko là số nguyên tố [loại]

           nếu k=1 thì 23k=23 nguyên tố 

           nếu k>1 thì 23k có nhiều hơn 2 ước [là hợp số ; loại]

             Vậy k=1

Câu 2; 2 là số nguyên tố chẵn duy nhất vì nó có 2 ước là 1 và chính nó còn những số chẵn khác đều chia hết cho 2.

14 tháng 10 2022

Câu 1 :nếu k=0 thì 23k=0 ko là số nguyên tố [loại]

           nếu k=1 thì 23k=23 nguyên tố 

     

Câu 1 :nếu k=0 thì 23k=0 ko là số nguyên tố [loại]

           nếu k=1 thì 23k=23 nguyên tố 

           nếu k>1 thì 23k có nhiều hơn 2 ước [là hợp số ; loại]

             Vậy k=1

Câu 2; 2 là số nguyên tố chẵn duy nhất vì nó có 2 ước là 1 và chính nó còn những số chẵn khác đều chia hết cho 2.

 

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha

1
25 tháng 11 2024

😑😐🙌🏿👐🏿🤲🏿🤜🏿🤛🏿✊🏿👊🏿👋🏿🤚🏿👉🏿👈🏿🖖🏿🤟🏿🤘🏿✌🏿🤞🏿🤙🏿👌🏿☝🏿👆🏿👇🏿🖕🏿🙏🏿

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

2
4 tháng 8 2017

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

4 tháng 8 2017

cảm ơn bạn nha

mình k cho ban roi do

Câu 1:Tập hợp các số tự nhiên là bội của 13 và có phần tử.Câu 2:Có số vừa là bội của 3 vừa là ước của 54.Câu 3:Tập hợp các số tự nhiên sao cho là {}(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").Câu 4:Tập hợp các số tự nhiên nhỏ hơn 120 chia hết cho 2 và 5 có số phần tử làCâu 5:Cho a là một số chẵn chia hết cho 5, b là một số chia hết cho 2.Vậy a + b khi chia cho...
Đọc tiếp

Câu 1:
Tập hợp các số tự nhiên là bội của 13 và có phần tử.

Câu 2:
Có số vừa là bội của 3 vừa là ước của 54.

Câu 3:
Tập hợp các số tự nhiên sao cho là {}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").

Câu 4:
Tập hợp các số tự nhiên nhỏ hơn 120 chia hết cho 2 và 5 có số phần tử là

Câu 5:
Cho a là một số chẵn chia hết cho 5, b là một số chia hết cho 2.Vậy a + b khi chia cho 2 thì có số dư là

Câu 6:
Tổng của tất cả các số nguyên tố có 1 chữ số là

Câu 7:
Có bao nhiêu hợp số có dạng ?
Trả lời: có số.

Câu 8:
Tìm số nguyên tố nhỏ nhất sao cho và cũng là số nguyên tố.
Trả lời: Số nguyên tố

Câu 9:
Cho là các số nguyên tố thỏa mãn . Tổng .

Câu 10:
Tổng hai số nguyên tố là một số nguyên tố. Vậy hiệu của hai số nguyên tố đó là .

0
14 tháng 10 2016

a) k = 1 

b) k = 1

20 tháng 10 2016

+để 3k là số nguyên tố thì k = 1

+để 7k là số nguyên tố thì k=1

4 tháng 1 2016

a) 7k là số nguyên tố

7k chia hết cho 7

7 là số nguyên tố

< = > 7k = 7

k = 1

b) 2k là số nguyên tố

Số ước của k là k + 1

Số nguyên tố có 2 ước 

< = > k + 1 = 2

k = 2 - 1  = 1

Vậy k = 1

4 tháng 1 2016

Ai li-ke cho mình đi để khỏi bị trừ điểm với !