K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2020

kẻ đường cao AH của tam giác ABC. 

Xét tam giác ABH và tam giác BCM có:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2220;</mo><mi>A</mi><mi>B</mi><mi>H</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#x2220;</mo><mi>B</mi><mi>C</mi><mi>M</mi></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2220;</mo><mi>A</mi><mi>H</mi><mi>B</mi><mo>=</mo><mo>&#x2220;</mo><mi>B</mi><mi>M</mi><mi>C</mi><mo>&#xA0;</mo><mfenced><mrow><mo>=</mo><mn>90</mn><mo>&#xB0;</mo></mrow></mfenced></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2206;</mo><mi>A</mi><mi>B</mi><mi>H</mi><mo>~</mo><mo>&#x2206;</mo><mi>B</mi><mi>C</mi><mi>M</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mfrac><mrow><mi>B</mi><mi>H</mi></mrow><mrow><mi>M</mi><mi>C</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>A</mi><mi>B</mi></mrow><mrow><mi>B</mi><mi>C</mi></mrow></mfrac><mspace linebreak="newline"/><mo>&#x21D4;</mo><mfrac><mrow><mi>A</mi><mi>M</mi></mrow><mrow><mi>M</mi><mi>C</mi></mrow></mfrac><mo>+</mo><mn>1</mn><mo>=</mo><mfrac><mrow><mi>A</mi><mi>M</mi></mrow><mrow><mi>M</mi><mi>C</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>A</mi><mi>M</mi><mo>.</mo><mi>M</mi><mi>C</mi></mrow><mrow><mi>M</mi><msup><mi>C</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>2</mn><msup><mfenced><mfrac><mrow><mi>A</mi><mi>B</mi></mrow><mrow><mi>B</mi><mi>C</mi></mrow></mfrac></mfenced><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>2</mn><mi>B</mi><msup><mi>H</mi><mn>2</mn></msup></mrow><mrow><mi>M</mi><msup><mi>C</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>B</mi><mi>C</mi><mo>.</mo><mi>B</mi><mi>H</mi></mrow><mrow><mi>M</mi><msup><mi>C</mi><mn>2</mn></msup></mrow></mfrac><mspace linebreak="newline"/><mo>&#x21D4;</mo><mi>A</mi><mi>M</mi><mo>.</mo><mi>M</mi><mi>C</mi><mo>=</mo><mi>B</mi><mi>C</mi><mo>.</mo><mi>B</mi><mi>H</mi><mo>.</mo><mspace linebreak="newline"/></math>

Thật vậy: xét tam giác AHC và tam giác BMC có:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2220;</mo><mi>A</mi><mi>H</mi><mi>C</mi><mo>=</mo><mo>&#x2220;</mo><mi>B</mi><mi>M</mi><mi>C</mi><mo>=</mo><mn>90</mn><mo>&#xB0;</mo><mspace linebreak="newline"/><mo>&#x2220;</mo><mi>A</mi><mi>C</mi><mi>B</mi><mo>:</mo><mo>&#x2009;</mo><mi>g</mi><mi>&#xF3;</mi><mi>c</mi><mo>&#xA0;</mo><mi>c</mi><mi>h</mi><mi>u</mi><mi>n</mi><mi>g</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#x2206;</mo><mi>A</mi><mi>H</mi><mi>C</mi><mo>~</mo><mo>&#x2206;</mo><mi>B</mi><mi>M</mi><mi>C</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mfrac><mrow><mi>A</mi><mi>C</mi></mrow><mrow><mi>B</mi><mi>C</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>H</mi><mi>C</mi></mrow><mrow><mi>M</mi><mi>C</mi></mrow></mfrac><mspace linebreak="newline"/><mo>&#x21D4;</mo><mi>A</mi><mi>C</mi><mo>.</mo><mi>M</mi><mi>C</mi><mo>=</mo><mi>B</mi><mi>C</mi><mo>.</mo><mi>H</mi><mi>C</mi><mo>=</mo><mi>B</mi><mi>C</mi><mo>.</mo><mi>B</mi><mi>H</mi></math>

Từ đó ta có đpcm. 

29 tháng 5 2017

A D E C I B J H K M O

  1. vÌ H là trực tâm của tam giác ABC , \(BD⊥BC,CE⊥AB\Rightarrow\widehat{BEC}=\widehat{BDC}=90^0\) nên BCDE nội tiếp đường tròn đường kính BC. Tâm đường tròn nội tiếp BCDE là J ( trung điểm BC)
  2. I đối xứng với A qua O => AI là đường kính của đường tròn tâm O =>\(\widehat{ACI}=\widehat{ABI}=90^0\)\(\hept{\begin{cases}BD⊥AC\\CI⊥AC\end{cases}\Rightarrow BD}\downarrow\uparrow CI\left(1\right)\) VÀ\(\hept{\begin{cases}CE⊥AB\\BI⊥AB\end{cases}\Rightarrow CE\uparrow\downarrow BI\left(2\right)}\)Từ (1) và (2) BHCI là hình bình hành,mà J LÀ Trung điểm của BC nên J là giao điểm của hai đường chéo HI và BC của hbh BICH nên ta có I,J,H thẳng hàng (DPCM)
  3. Vì BCDE là tứ giác nội tiếp nên \(\widehat{ABC}=\widehat{ADK}\left(3\right)\)mặt khác ABIC nội tiếp (O) nên \(\widehat{IAC}=\widehat{IBC}\left(4\right)\)ta lại có \(BI⊥AB\Rightarrow\widehat{ABC}+\widehat{IBC}=90^O\left(5\right)\)TỪ 3,4,5 ta có \(\widehat{IAC}+\widehat{ADK}=90^O\)hay \(DE⊥AM\Rightarrow\Delta ADM\)vuông tại D và có DE là đường cao tương ứng tại D nên theo hệ thức lượng trong tam giác vuông có (DPCM) \(\frac{1}{DK^2}=\frac{1}{DA^2}+\frac{1}{DM^2}\)
9 tháng 7 2016

Giải hộ mình đi mình đang cần gấp ai giải cho mình sớm nhất mà lập luận chặt chẽ thì mình k cho

30 tháng 8 2016

A B C H x c a b D

Ta có: \(tan\frac{B}{2}=\frac{x}{c}\)

Lại có \(AB=BH=c\Rightarrow HC=a-c\)

Ta có: \(DC^2=DH^2+DC^2\Rightarrow\left(b-x\right)^2=x^2+\left(a-c\right)^2\)

\(\Rightarrow x^2-2bx+b^2=x^2+\left(a-c\right)^2\Rightarrow x=\frac{b^2-\left(a-c\right)^2}{2b}=\frac{a^2-c^2-a^2+2ac-c^2}{2b}\)

\(=\frac{2ac-2c^2}{2b}=\frac{c\left(a-c\right)}{b}\)

\(\left(\frac{x}{c}\right)^2=\frac{\left(a-c\right)^2}{b^2}=\frac{\left(a-c\right)^2}{a^2-c^2}=\frac{a-c}{a+c}\)

\(\Rightarrow tan\frac{B}{2}=\sqrt{\frac{a-c}{a+c}}\)

31 tháng 8 2016

ko biet

26 tháng 8 2020

ĐỀ BÀI THIẾU \(\widehat{BAC}=105^0\). Hình vẽ trong TKHĐ

Qua A kẻ đường thẳng vuông góc với AC cắt BC tại M. Tại E kẻ đường thẳng song song với AH cắt AC tại D.

Xét tam giác ABE có AB=BE=1 mà ^ABE=600 nên tam giác ABE đều. Khi đó 

\(AH=AB\cdot\sin\widehat{ABH}=\sin60^0=\frac{\sqrt{3}}{2}\)

Dễ thấy \(\Delta MAE=\Delta ADE\left(g.c.g\right)\Rightarrow AD=AM\Rightarrow\Delta\)AMC vuông tại A có đường cao AH theo hệ thức lượng:

\(\frac{1}{AC^2}+\frac{1}{AM^2}=\frac{1}{AH^2}\Rightarrow\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2}=\frac{4}{3}\)

26 tháng 8 2020

Gọi F đối xứng với C qua A. Khi đó tam giác FBC vuông tại F.

Theo hệ thức lượng thì \(BC^2=HC\cdot CF\). Mặt khác \(BC^2=2AB\cdot HC\)

Đến đây dễ rồi nha, làm tiếp thì chán quá :(

15 tháng 7 2020

cá voi xanh không ? :))))