Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\frac{7-1}{1.3.7}+\frac{9-3}{3.7.9}+\frac{13-7}{7.9.13}+\frac{15-9}{9.13.15}\)\(+\frac{19-13}{13.15.19}\)
\(=\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+\frac{1}{7.9}-\frac{1}{9.13}+\frac{1}{9.13}-\frac{1}{13.15}+\frac{1}{13.15}-\frac{1}{15.19}\)
\(=\frac{1}{1.3}-\frac{1}{15.19}=\frac{95}{285}-\frac{1}{285}=\frac{94}{285}\)
\(b,=\frac{1}{6}.\left(\frac{6}{1.3.7}+\frac{6}{3.7.9}+\frac{6}{7.9.13}+\frac{6}{9.13.15}+\frac{6}{13.15.19}\right)\)
làm giống như trên
\(c,=\frac{1}{8}.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{50-48}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{16}.\left(\frac{1225}{2450}-\frac{1}{2450}\right)=\frac{153}{4900}\)
\(d,=\frac{5}{7}.\left(\frac{7}{1.5.8}+\frac{7}{5.8.12}+\frac{7}{8.12.15}+...+\frac{7}{33.36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{8-1}{1.5.8}+\frac{12-5}{5.8.12}+\frac{15-8}{8.12.15}+...+\frac{40-33}{33.36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{1}{1.5}-\frac{1}{5.8}+\frac{1}{5.8}-\frac{1}{8.12}+\frac{1}{8.12}-\frac{1}{12.15}+...+\frac{1}{33.36}-\frac{1}{36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{1}{5}-\frac{1}{1440}\right)=\frac{5}{7}.\left(\frac{288}{1440}-\frac{1}{1440}\right)=\frac{41}{288}\)
P/S: . là nhân nha
\(A=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{9.11}-\frac{1}{11.13}\)
\(\Leftrightarrow A=\frac{1}{1.3}-\frac{1}{11.13}=\frac{1}{3}-\frac{1}{143}=\frac{140}{429}\)
\(A=\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+\frac{4}{7.9.11}+\frac{4}{9.11.13}\)
\(\Rightarrow A=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{9.11}-\frac{1}{11.13}\)
\(\Rightarrow A=\frac{1}{1.3}-\frac{1}{11.13}=\frac{1}{3}-\frac{1}{143}=\frac{140}{429}\)
\(\frac{1}{5\times9}+\frac{1}{9\times13}+\frac{1}{13\times17}+...+\frac{1}{41\times45}\)
= \(\frac{1}{4}\times\left(\frac{4}{5\times9}+\frac{4}{9\times13}+\frac{4}{13\times17}+...+\frac{4}{41\times45}\right)\)
= \(\frac{1}{4}\times\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\right)\)
= \(\frac{1}{4}\times\left(\frac{1}{5}-\frac{1}{45}\right)\)
= \(\frac{1}{4}\times\frac{8}{45}=\frac{2}{45}\)
\(A=\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+...+\frac{1}{41\cdot45}\)
\(4A=\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+...+\frac{4}{41\cdot45}\)
\(4A=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\)
\(4A=\frac{1}{5}-\frac{1}{45}\)
\(4A=\frac{8}{45}\)
\(A=\frac{2}{45}\)
Bài 1:
\(A=\frac{5}{3.6}+\frac{5}{6.9}+....+\frac{5}{96.99}\)
\(\Rightarrow\frac{3}{5}A=\frac{3}{3.6}+\frac{3}{6.9}+....+\frac{3}{96.99}\)
\(\Rightarrow\frac{3}{5}A=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{96}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
\(\Rightarrow A=\frac{32}{99}\div\frac{3}{5}=\frac{160}{297}\)
Bái 2:
\(B=\frac{2}{3.7}+\frac{2}{7.11}+...+\frac{2}{99.103}\)
\(\Rightarrow2B=\frac{4}{3.7}+\frac{4}{7.11}+....+\frac{4}{99.103}\)
\(\Rightarrow2B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+....+\frac{1}{99}-\frac{1}{103}\)
\(=\frac{1}{3}-\frac{1}{103}=\frac{100}{309}\)
\(\Rightarrow B=\frac{100}{309}\div2=\frac{50}{309}\)
Bài 1:
Ta có:
\(\frac{5}{n.\left(n+3\right)}=\frac{5}{3}.\frac{3}{n.\left(n+3\right)}=\frac{5}{3}.\frac{\left(n+3\right)-n}{n.\left(n+3\right)}=\frac{5}{3}.\left[\frac{n+3}{n.\left(n+3\right)}-\frac{n}{n\left(n+3\right)}\right]\)\(=\frac{5}{3}\left(\frac{1}{n}-\frac{1}{n+3}\right)\)
\(\frac{5}{3.6}+\frac{5}{6.9}+\frac{5}{9.12}+...+\frac{5}{96.99}=\frac{5}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{96}-\frac{1}{99}\right)\)
1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20
= (1+19)+(2+18)+(3+17)+(4+16)+(5+15)+(6+14)+(7+13)+(8+12)+(9+11)+(10+20)
= 20 + 20 + 20 + 20 + 20 + 20 + 20 + 20 + 20 +30
= 20x9 +30
=180+30
=210
tk cho mik nhé
2*32*12*4*6*41= ( 2 * 12) * (32*41) * (4*6)
= 24 * 1312 * 24
= 24 *24 * 1312
= 576 * 1312
= 755712
2*33*7+7*2*45+7*22*2 = 7 * ( 2*33+ 2*45 + 22*2)
= 7 * ( 66+90+44)
= 7* 200 = 1400
17*85+15*17-120 = 17 * ( 85 + 15) - 120
= 17*100- 120
=1700-120
= 1580
Ta có:
1 + 3 + 5 + 7 +...+2000001
Các số 1,2,3,5,7,.....,2000001 lập thành dãy số tự nhiên cách đều có khoảng cách là 2 đơn vị
Số số hạng của dãy là:
( 2000001 - 1 ) : 2 + 1 = 1000001 ( số hạng )
Tổng của dãy trên là :
( 2000001 + 1 ) x 1000001 :2 = 1000002000001
Đ/s: 1000002000001
2. \(\frac{11}{5}-\frac{3}{5}\times\left(2-\frac{3}{2}\right)\)
\(=\frac{11}{5}-\left(\frac{3}{5}\times2-\frac{3}{5}\times\frac{3}{2}\right)\)
\(=\frac{11}{5}-\left(\frac{6}{5}-\frac{9}{10}\right)=\frac{11}{5}-\frac{3}{10}=\frac{22}{10}-\frac{3}{10}=\frac{19}{10}\)
3.\(\frac{19}{32}\times\frac{17}{21}+\frac{17}{21}:\frac{32}{13}=\frac{19}{32}\times\frac{17}{21}+\frac{17}{21}\times\frac{13}{32}\)
\(=\frac{17}{21}\times\left(\frac{19}{32}+\frac{13}{32}\right)=\frac{17}{21}\times1=\frac{17}{21}\)
4. \(19,26\times81+192,6\times1,8+19,26\)
\(=19,26\times81+\left[\left(192,6:10\right)\times\left(1.8\times10\right)\right]+19,26\times1\)
\(=19,26\times81+19,26\times18+19,26\times1\)
\(=19,26\times\left(81+18+1\right)=19,26\times100=1926\)
CÂU 1 VÀ CÂU 5 KO BIK LÀM MONG BN THÔNG CẢM
câu 1 : Msc : 90 KQ : 1/8
câu 2 : chưa ra nha xin lỗi
câu 3 : chép nguyên phần đầu chuyển chia 32/13 thành * 13/32 * 1 làm như bt kq : 17/21
câu 4 : chép từ đầu đến 192 , 6 thành 19,26 rồi trả 10 thành 18 làm như bt kq : 1926
câu 5 : tách ra dài lắm nhưng bạn biết làm rồi mà
( mình là chủ nick kia , câu hỏi đáp này nè )
\(B\)= \(\frac{18}{19}\)nhé bạn !
Bài này phải làm cũng lâu đấy, mk nghĩ đã