Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\frac{7-1}{1.3.7}+\frac{9-3}{3.7.9}+\frac{13-7}{7.9.13}+\frac{15-9}{9.13.15}\)\(+\frac{19-13}{13.15.19}\)
\(=\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+\frac{1}{7.9}-\frac{1}{9.13}+\frac{1}{9.13}-\frac{1}{13.15}+\frac{1}{13.15}-\frac{1}{15.19}\)
\(=\frac{1}{1.3}-\frac{1}{15.19}=\frac{95}{285}-\frac{1}{285}=\frac{94}{285}\)
\(b,=\frac{1}{6}.\left(\frac{6}{1.3.7}+\frac{6}{3.7.9}+\frac{6}{7.9.13}+\frac{6}{9.13.15}+\frac{6}{13.15.19}\right)\)
làm giống như trên
\(c,=\frac{1}{8}.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{50-48}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{16}.\left(\frac{1225}{2450}-\frac{1}{2450}\right)=\frac{153}{4900}\)
\(d,=\frac{5}{7}.\left(\frac{7}{1.5.8}+\frac{7}{5.8.12}+\frac{7}{8.12.15}+...+\frac{7}{33.36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{8-1}{1.5.8}+\frac{12-5}{5.8.12}+\frac{15-8}{8.12.15}+...+\frac{40-33}{33.36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{1}{1.5}-\frac{1}{5.8}+\frac{1}{5.8}-\frac{1}{8.12}+\frac{1}{8.12}-\frac{1}{12.15}+...+\frac{1}{33.36}-\frac{1}{36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{1}{5}-\frac{1}{1440}\right)=\frac{5}{7}.\left(\frac{288}{1440}-\frac{1}{1440}\right)=\frac{41}{288}\)
P/S: . là nhân nha
bạn ơi tại sao bạn lại ra kết quả nh vậyke chi tiết hơn được không vậy
1.3.77−1+3.7.99−3+7.9.1313−7+9.13.1515−9+\frac{19-13}{13.15.19}+13.15.1919−13
=\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+\frac{1}{7.9}-\frac{1}{9.13}+\frac{1}{9.13}-\frac{1}{13.15}+\frac{1}{13.15}-\frac{1}{15.19}=1.31−3.71+3.71−7.91+7.91−9.131+9.131−13.151+13.151−15.191
=\frac{1}{1.3}-\frac{1}{15.19}=\frac{95}{285}-\frac{1}{285}=\frac{94}{285}=1.31−15.191=28595−2851=28594
b,=\frac{1}{6}.\left(\frac{6}{1.3.7}+\frac{6}{3.7.9}+\frac{6}{7.9.13}+\frac{6}{9.13.15}+\frac{6}{13.15.19}\right)b,=61.(1.3.76+3.7.96+7.9.136+9.13.156+13.15.196)
làm giống như trên
c,=\frac{1}{8}.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\right)c,=81.(1.2.31+2.3.41+3.4.51+...+48.49.501)
=\frac{1}{16}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)=161.(1.2.32+2.3.42+3.4.52+...+48.49.502)
=\frac{1}{16}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{50-48}{48.49.50}\right)=161.(1.2.33−1+2.3.44−2+3.4.55−3+...+48.49.5050−48)
=\frac{1}{16}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)=161.(1.21−2.31+2.31−3.41+3.41−4.51+...+48.491−49.501)
=\frac{1}{16}.\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{16}.\left(\frac{1225}{2450}-\frac{1}{2450}\right)=\frac{153}{4900}=161.(21−24501)=161.(24501225−24501)=4900153
d,=\frac{5}{7}.\left(\frac{7}{1.5.8}+\frac{7}{5.8.12}+\frac{7}{8.12.15}+...+\frac{7}{33.36.40}\right)d,=75.(1.5.87+5.8.127+8.12.157+...+33.36.407)
=\frac{5}{7}.\left(\frac{8-1}{1.5.8}+\frac{12-5}{5.8.12}+\frac{15-8}{8.12.15}+...+\frac{40-33}{33.36.40}\right)=75.(1.5.88−1+5.8.1212−5+8.12.1515−8+...+33.36.4040−33)
=\frac{5}{7}.\left(\frac{1}{1.5}-\frac{1}{5.8}+\frac{1}{5.8}-\frac{1}{8.12}+\frac{1}{8.12}-\frac{1}{12.15}+...+\frac{1}{33.36}-\frac{1}{36.40}\right)=75.(1.51−5.81+5.81−8.121+8.121−12.151+...+33.361−36.401)
=\frac{5}{7}.\left(\frac{1}{5}-\frac{1}{1440}\right)=\frac{5}{7}.\left(\frac{288}{1440}-\frac{1}{1440}\right)=\frac{41}{288}=75.(51−14401)=75.(1440288−14401)=28841
P/S: . là nhân nha
a) \(\frac{1.3+3.5+5.7+7.9}{3.6+9.10+15.14+21.18}\)
= \(\frac{1.3+3.5+5.7+7.9}{1.3.2.3+3.5.2.3+5.7.2.3+7.9.2.3}\)
= \(\frac{1.3+3.5+5.7+7.9}{1.3.6+3.5.6+5.7.6+7.9.6}\)
= \(\frac{1.3+3.5+5.7+7.9}{6.\left(1.3+3.5+5.7+7.9\right)}=\frac{1}{6}\)
Dấu "." là dấu nhân cấp 2
b) \(\frac{1.2+2.3+3.4+4.5}{3.6+6.9+9.12+12.15}\)
= \(\frac{1.2+2.3+3.4+4.5}{1.2.3.3+2.3.3.3+3.4.3.3+4.5.3.3}\)
= \(\frac{1.2+2.3+3.4+4.5}{1.2.9+2.3.9+3.4.9+4.5.9}\)
= \(\frac{1.2+2.3+3.4+4.5}{9.\left(1.2+2.3+3.4+4.5\right)}=\frac{1}{9}\)
Dấu "." là dấu nhân cấp 2
c) \(\frac{0,3+\frac{3}{7}+\frac{3}{11}}{0,4+\frac{4}{7}+\frac{4}{11}}\)= \(\frac{\frac{3}{10}+\frac{3}{7}+\frac{3}{11}}{\frac{4}{10}+\frac{4}{7}+\frac{4}{11}}\)= \(\frac{3.\left(\frac{1}{10}+\frac{1}{7}+\frac{1}{11}\right)}{4.\left(\frac{1}{10}+\frac{1}{7}+\frac{1}{11}\right)}=\frac{3}{4}\)
a) Cách 1 : Cách 2
1 + 3 +5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 1 + 3 +5 + 7 + 9 + 11 + 13 + 15 + 17 + 19
=(1 + 19) + (3 + 17) +.... + (9 + 11) Áp dụng công thức tính dãy số ta có :
= 20 + 20 + ... + 20 \(\frac{\left[\left(19-1\right):2+1\right].\left(19+1\right)}{2}=\frac{10.20}{2}=10.10=100\)
= 20 x 5 = 100
b) giống bài a nhưng cách 1 làm dài lắm , mình sẽ làm cách 2
áp dụng công thức tính dãy số ta có:
\(\frac{\left[\left(200-4\right):4+1\right].\left(200+4\right)}{2}=\frac{50.204}{2}=50.102=5100\)
a) 12/17 và 7/153
=>12/17 = 108/153
=>108/153 > 7/153
Vậy 12/17 > 7/153
b) Vì : 1999/2001 < 1 và 12/11 > 1 nên 1999/2001 < 12/11
c) 13/60 và 27/100
13/60 < 15/60 = 1/4
27/100 > 25/100 = 1/4
vậy 13/60 < 27/100
d) Ta có: 1 - 13/27 = 14/27
1 - 27/41 = 14/41
Vì 14/27 > 14/41 nên 13/27 < 27/41
bài làm
a) 12/17 và 7/153
=>12/17 = 108/153
=>108/153 > 7/153
Vậy 12/17 > 7/153
b) Vì : 1999/2001 < 1 và 12/11 > 1 nên 1999/2001 < 12/11
c) 13/60 và 27/100
13/60 < 15/60 = 1/4
27/100 > 25/100 = 1/4
vậy 13/60 < 27/100
d) Ta có: 1 - 13/27 = 14/27
1 - 27/41 = 14/41
Vì 14/27 > 14/41 nên 13/27 < 27/41
a.1+3+5+7+9+11+13+15+17+19
muốn tính tổng của dãy ta lấy tổng số đầu và cuối nhân số các số hạng rồi chia 2.
tổng của dãy:(19+1)x10:2=100
123,45 + 23,56 +76,44 + 54,55
= (123,45 + 54,55) + (23,56 + 76,44)
= 178 + 100
= 278
456 x 45 + 456 x 10 + - 456 x 55
=456 x (45 +10-55)
=456 x 0
=0
2,5 x 8,5 + 7,5 x 8,5
=8,5 x (2,5 +7,5)
= 8,5 x 10
= 85
86 x 5 + 86 x 4 + 86
= 86 x (5+4+1)
= 86 x10
860
Bài 1:
\(A=\frac{5}{3.6}+\frac{5}{6.9}+....+\frac{5}{96.99}\)
\(\Rightarrow\frac{3}{5}A=\frac{3}{3.6}+\frac{3}{6.9}+....+\frac{3}{96.99}\)
\(\Rightarrow\frac{3}{5}A=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{96}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
\(\Rightarrow A=\frac{32}{99}\div\frac{3}{5}=\frac{160}{297}\)
Bái 2:
\(B=\frac{2}{3.7}+\frac{2}{7.11}+...+\frac{2}{99.103}\)
\(\Rightarrow2B=\frac{4}{3.7}+\frac{4}{7.11}+....+\frac{4}{99.103}\)
\(\Rightarrow2B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+....+\frac{1}{99}-\frac{1}{103}\)
\(=\frac{1}{3}-\frac{1}{103}=\frac{100}{309}\)
\(\Rightarrow B=\frac{100}{309}\div2=\frac{50}{309}\)
Bài 1:
Ta có:
\(\frac{5}{n.\left(n+3\right)}=\frac{5}{3}.\frac{3}{n.\left(n+3\right)}=\frac{5}{3}.\frac{\left(n+3\right)-n}{n.\left(n+3\right)}=\frac{5}{3}.\left[\frac{n+3}{n.\left(n+3\right)}-\frac{n}{n\left(n+3\right)}\right]\)\(=\frac{5}{3}\left(\frac{1}{n}-\frac{1}{n+3}\right)\)
\(\frac{5}{3.6}+\frac{5}{6.9}+\frac{5}{9.12}+...+\frac{5}{96.99}=\frac{5}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{96}-\frac{1}{99}\right)\)