Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( a + b ) ( a + c ) = 8 hay a2 + ab + ac + bc = 8
\(\Rightarrow\)a ( a + b + c ) + bc = 8
\(\sqrt{abc\left(a+b+c\right)}=\sqrt{a\left(a+b+c\right).bc}\le\frac{a\left(a+b+c\right)+bc}{2}=4\)
\(\Rightarrow abc\left(a+b+c\right)\le16\)
Vậy GTLN của A là 16
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó:AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra B và C đối xứng nhau qua OA
\(\Delta'=4-\left(m-1\right)=5-m\)
để pt có nghiệm kép khi \(5-m=0\Leftrightarrow m=5\)
chọn B
Phương trình có nghiệm kép khi:
\(\Delta'=4-\left(m-1\right)=0\Leftrightarrow5-m=0\)
\(\Rightarrow m=5\)
Để mình chứng minh là đề bạn sai nhé
Điều kiện xác định
\(\hept{\begin{cases}2x-1\ge0\\2x-3x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0,5\\x\le0\end{cases}}\)vô lý
Từ điều kiện xác định đã thấy đề sai rồi
\(\sqrt{156^2-124^2}\)
Áp dụng hằng đẳng thức \(A^2-B^2=\left(A-B\right)\left(A+B\right)\)
Ta được
\(\sqrt{156^2-124^2}\)
\(=\sqrt{\left(156-124\right)\left(156+124\right)}\)
\(=\sqrt{32\times280}\)
\(=16\sqrt{35}\)
Xét phương trình hoành độ giao điểm:
\(x^2=\left(m+2\right)x-m+6\Rightarrow x^2-\left(m+2\right)x+m-6=0\)
Để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ dương thì phương trình trên phải có hai nghiệm phân biệt cùng dương, tức là:
\(\hept{\begin{cases}\Delta>0\\S>0\\p>0\end{cases}}\Rightarrow\hept{\begin{cases}\left(m+2\right)^2-4\left(m-6\right)>0\\m+2>0\\m-6>0\end{cases}\Rightarrow\hept{\begin{cases}m^2+28>0\\m>6\end{cases}}\Rightarrow m>6}\)
Ta có:
sin²a + cos²a = 1
⇒ sin²a = 1 - cos²a
= 1 - (3/4)²
= 1 - 9/16
= 7/16
⇒ sina = √7/4
⇒ tana = sina/cosa = (√7/4)/(3/4) = √7/3