Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B,x(x-1)(x-2)(x-3)=15
(x2-3x)(x2-3x+2)=15
Đặt x2-3x+1=k
(k-1)(k+1)=15
k2=16
\(\orbr{\begin{cases}k=4\\k=-4\end{cases}}\)
\(\orbr{\begin{cases}x^2-3x+1=4\\x^2-3x+1=-4\end{cases}}\)
Vậy pt vô nghiệm
k nhá
Pro kinh không thể lướt qua
Giao luu: x=3
có thể quy đồng làm bt; \(!vt!\ge!vp!\)
a: \(\dfrac{3x-7}{2}+\dfrac{x-1}{3}=-16\)
\(\Leftrightarrow3\left(3x-7\right)+2\left(x-1\right)=-96\)
\(\Leftrightarrow9x-21+2x-2=-96\)
=>11x=-73
hay x=-73/11
b: \(x-\dfrac{x-1}{3}=\dfrac{2x+1}{5}\)
=>15x-5(x-1)=3(2x+1)
=>15x-5x+5=6x+3
=>10x+5=6x+3
=>4x=-2
hay x=-1/2
c: \(\dfrac{2x-1}{3}-\dfrac{5x+2}{7}=x+13\)
=>14x-7-15x-6=21(x+13)
=>21x+273=-x-13
=>22x=-286
hay x=13
1) \(\frac{x}{x^2-1}+\frac{3}{x^2-2x-3}=\frac{x}{x^2-4x+3}\)
\(\Leftrightarrow\frac{x}{\left(x+1\right)\left(x-1\right)}+\frac{3}{\left(x-3\right)\left(x+1\right)}=\frac{x}{\left(x-3\right)\left(x-1\right)}\)
\(\Leftrightarrow x\left(x-3\right)+3\left(x-1\right)=x\left(x+1\right)\)
\(\Leftrightarrow x^2-3=x^2+x\)
\(\Leftrightarrow-3=x\)
\(\Leftrightarrow x=-3\)
Vậy: nghiệm phương trình là -3
\(3,\text{ }\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16=0\)
\(\Rightarrow\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)=0-16\)
\(\Rightarrow\text{ Có lẻ thừa số âm }\)
Mà \(\left(x+8\right)>\left(x+6\right)>\left(x+4\right)>\left(x+2\right)\)
Ta có hai trường hợp :
\(TH\text{ }1\text{ :}\) Có một thừa số âm
\(\Rightarrow\text{ }\left(x+2\right)< 0\)
\(\Rightarrow\text{ }x< -2\)
\(TH\text{ }2\text{ : }\) Có 3 thừa số âm
\(\Rightarrow\text{ }\hept{\begin{cases}\left(x+2\right)< 0\\\left(x+4\right)< 0\\\left(x+6\right)< 0\end{cases}}\) \(\Rightarrow\text{ }\left(x+2\right)< 0\text{ }\Rightarrow\text{ }x< -2\)
Si thì thôi nha ! Mong bạn thông cảm !
\(1,x^2+2xy+x+2y\)
\(=\left(x^2+2xy\right)+\left(x+2y\right)\)
\(=x\left(x+2y\right)+\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x+1\right)\)
\(2,x^2-10x+25\)
\(=x^2-2.x.5+5^2\)
\(=\left(x-5\right)^2\)
Đợi mk chút ,mk có việc bận ,tối mk làm tiếp nha bn
\(3,x^3+3x^2+3x+1\)
\(=\left(x^3+1\right)+\left(3x^2+3x\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)+3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1+3x\right)\)
\(=\left(x+1\right)\left(x^2+2x+1\right)\)
\(=\left(x+1\right)\left(x+1\right)^2\)
\(=\left(x+1\right)^3\)
\(4,x^3-8\)
\(=x^3-2^3\)
\(=\left(x-2\right)\left(x^2+2x+4\right)\)
\(5,x^3+27\)
\(=x^3+3^3\)
\(=\left(x+3\right)\left(x^2-3x+9\right)\)
\(6,x^3-\dfrac{1}{8}\)
\(=x^3-\left(\dfrac{1}{2}\right)^3\)
\(=\left(x-\dfrac{1}{2}\right)\left(x^2+\dfrac{1}{2}x+\dfrac{1}{4}\right)\)
\(7,x^3-x+y^3-y\)
\(=\left(x^3+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
\(8,4x^2-1\)
\(=\left(2x\right)^2-1^2\)
\(=\left(2x-1\right)\left(2x+1\right)\)
\(9,49x^2-9\)
\(=\left(7x\right)^2-3^2\)
\(=\left(7x-3\right)\left(7x+3\right)\)
Câu B đây;vừa bị lag
B, \(\frac{x+1}{35}\)+\(\frac{x+3}{33}\)=\(\frac{x+5}{31}\)+\(\frac{x+7}{29}\)
⇔ \(\frac{x+1}{35}\)+1+\(\frac{x+3}{33}\)+1=\(\frac{x+5}{31}\)+1+\(\frac{x+7}{29}\)+1
⇔ \(\frac{x+36}{35}\)+\(\frac{x+36}{33}\)-\(\frac{x+36}{31}\)-\(\frac{x+36}{29}\)=0
⇔ (x+36)(\(\frac{1}{35}\)+\(\frac{1}{33}\)-\(\frac{1}{31}\)-\(\frac{1}{29}\))=0
Mà \(\frac{1}{35}\)+\(\frac{1}{33}\)-\(\frac{1}{31}\)-\(\frac{1}{29}\)<0
⇔ x+36=0
⇔ x=-36
Vậy tập nghiệm của phương trình đã cho là:S={-36}
câu C tương tự nhé
\(\dfrac{x-2014}{4}+\dfrac{x-2015}{3}=\dfrac{x-13}{2005}+\dfrac{x-14}{2004}\)
<=>\(\left(\dfrac{x-2014}{4}-1\right)+\left(\dfrac{x-2015}{3}-1\right)=\left(\dfrac{x-13}{2005}-1\right)+\left(\dfrac{x-14}{2004}-1\right)\)
<=>\(\dfrac{x-2018}{4}+\dfrac{x-2018}{3}=\dfrac{x-2018}{2005}+\dfrac{x-2018}{2004}\)
<=>\(\left(x-2018\right).\left[\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{2005}-\dfrac{1}{2004}\right]=0\)
<=> \(x-2018=0\)
=>x=2018
Vậy S= {2018}
Chúc bạn học tốt!
#Yuii
Áp dụng : (A + B)3 = A3 + 3A2B + 3AB2 + B3
11) \(\left(x^2+\frac{3}{xy}\right)^3=\left(x^2\right)^3+3\cdot\left(x^2\right)^2\cdot\frac{3}{xy}+3\cdot x^2\cdot\left(\frac{3}{xy}\right)^2+\left(\frac{3}{xy}\right)^3\)
\(=x^6+3\cdot x^4\cdot\frac{3}{xy}+3\cdot x^2\cdot\frac{9}{x^2y^2}+\frac{27}{x^3y^3}\)
\(=x^6+\frac{9x^4}{xy}+\frac{27\cdot x^2}{x^2y^2}+\frac{27}{x^3y^3}\)
\(=x^6+\frac{9x^3}{y}+\frac{27}{y^2}+\frac{27}{x^3y^3}\)
12) \(\left(x^2+\frac{2}{x}\right)^3=\left(x^2\right)^3+3\cdot\left(x^2\right)^2\cdot\frac{2}{x}+3\cdot x^2\cdot\left(\frac{2}{x}\right)^2+\left(\frac{2}{x}\right)^3\)
\(=x^6+3\cdot x^4\cdot\frac{2}{x}+3\cdot x^2\cdot\frac{4}{x^2}+\frac{8}{x^3}\)
\(=x^6+\frac{6\cdot x^4}{x}+\frac{12\cdot x^2}{x^2}+\frac{8}{x^3}\)
\(=x^6+6x^3+12+8x^3\)
13) \(\left(3y+\frac{x}{2}\right)^3=\left(3y\right)^3+3\cdot3y^2\cdot\frac{x}{2}+3\cdot3y+\left(\frac{x}{2}\right)^2+\left(\frac{x}{2}\right)^3\)
\(=27y^3+\frac{9y^2\cdot x}{2}+9y+\frac{x^2}{4}+\frac{x^3}{8}\)
14) \(\left(1\frac{1}{2}xy+1\right)^3=\left(\frac{3}{2}xy+1\right)^3=\left(\frac{3}{2}xy\right)^3+3\cdot\left(\frac{3}{2}xy\right)^2\cdot1+3\cdot\frac{3}{2}xy\cdot1^2+1^3\)
\(=\frac{27}{8}x^3y^3+3\cdot\frac{9}{4}x^2y^2+\frac{9}{2}xy+1\)
\(=\frac{27}{8}x^3y^3+\frac{27}{4}x^2y^2+\frac{9}{2}xy+1\)
15) \(\left(\frac{x^2}{2}+\frac{2}{y}\right)^3=\left(\frac{x^2}{2}\right)^3+3\cdot\left(\frac{x^2}{2}\right)^2\cdot\frac{2}{y}+3\cdot\frac{x^2}{2}\cdot\left(\frac{2}{y}\right)^2+\left(\frac{2}{y}\right)^3\)
\(=\frac{x^6}{8}+3\cdot\frac{x^4}{4}\cdot\frac{2}{y}+3\cdot\frac{x^2}{2}\cdot\frac{4}{y^2}+\frac{8}{y^3}\)
\(=\frac{x^6}{8}+\frac{3x^4}{2y}+\frac{6x^2}{y^2}+\frac{8}{y^3}\)
Còn 5 bài cuối áp dụng tương tự như thế :)
:))) khó quá
x-3/13+x-3/14=x-3/15+x-3/16
<=> x-3/13+x-3/14-x-3/15-x-3/16=0
<=> (x-3).(1/13+1/14-1/15-1/16)
<=> (x-3)=0 ( Vì 1/13+1/14-1/15-1/16>0)
<=> x-3=0 => x=3
Vậy x=3