K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

\(1,x^2+2xy+x+2y\)

\(=\left(x^2+2xy\right)+\left(x+2y\right)\)

\(=x\left(x+2y\right)+\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x+1\right)\)

\(2,x^2-10x+25\)

\(=x^2-2.x.5+5^2\)

\(=\left(x-5\right)^2\)

Đợi mk chút ,mk có việc bận ,tối mk làm tiếp nha bn

1 tháng 11 2017

\(3,x^3+3x^2+3x+1\)

\(=\left(x^3+1\right)+\left(3x^2+3x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+3x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1+3x\right)\)

\(=\left(x+1\right)\left(x^2+2x+1\right)\)

\(=\left(x+1\right)\left(x+1\right)^2\)

\(=\left(x+1\right)^3\)

\(4,x^3-8\)

\(=x^3-2^3\)

\(=\left(x-2\right)\left(x^2+2x+4\right)\)

\(5,x^3+27\)

\(=x^3+3^3\)

\(=\left(x+3\right)\left(x^2-3x+9\right)\)

\(6,x^3-\dfrac{1}{8}\)

\(=x^3-\left(\dfrac{1}{2}\right)^3\)

\(=\left(x-\dfrac{1}{2}\right)\left(x^2+\dfrac{1}{2}x+\dfrac{1}{4}\right)\)

\(7,x^3-x+y^3-y\)

\(=\left(x^3+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)

\(8,4x^2-1\)

\(=\left(2x\right)^2-1^2\)

\(=\left(2x-1\right)\left(2x+1\right)\)

\(9,49x^2-9\)

\(=\left(7x\right)^2-3^2\)

\(=\left(7x-3\right)\left(7x+3\right)\)

\(\left(4-3x\right)\left(10x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)

\(\left(7-2x\right)\left(4+8x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)

rồi thực hiện đến hết ... 

Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>

\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)

\(2x^2-7x+3=4x^2+4x-3\)

\(2x^2-7x+3-4x^2-4x+3=0\)

\(-2x^2-11x+6=0\)

\(2x^2+11x-6=0\)

\(2x^2+12x-x-6=0\)

\(2x\left(x+6\right)-\left(x+6\right)=0\)

\(\left(x+6\right)\left(2x-1\right)=0\)

\(x+6=0\Leftrightarrow x=-6\)

\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

\(3x-2x^2=0\)

\(x\left(2x-3\right)=0\)

\(x=0\)

\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Tự lm tiếp nha 

25 tháng 9 2017

Ta có : x3 - 7x + 6 

= x3 - x - 6x + 6 

= x(x2 - 1) - 6(x - 1)

= x(x + 1)(x - 1) - 6(x - 1)

= (x - 1) [x(x + 1) - 6]

= (x - 1) (x2 + x - 6) . 

CÁC Ý SAU TƯƠNG TỰ

19 tháng 2 2018

   x3 - 7x + 6 

= x3 - x - 6x + 6 

= x(x2 - 1) - 6(x - 1)

= x(x + 1)(x - 1) - 6(x - 1)

= (x - 1) [x(x + 1) - 6]

= (x - 1) (x2 + x - 6) . 

25 tháng 9 2017

1

x3-7x+6

=x3+0x2-7x +6

= x3-x2+x2-x-6x+6

=(x3-x2)+(x2-x)-(6x-6)

=x2(x-1)+x(x-1)-6(x-1)

=(x-1)(x2+x-6)

=(x-1)(x2+3x-2x-6)

=(x-1)[x(x+3)-2(x+3)]

=(x-1)(x-2)(x+3)

25 tháng 9 2017

7) (x+2)(x+3)(x+4)(x+5)-24

=(x+2)(x+5) (x+3)(x+4)-24

=[x(x+5)+2(x+5)][x(x+4)+3(x+4)]-24

=[x2+5x+2x+10][x2+4x+3x+12]-24

=[x2+7x+10][x2+7x+12]-24

đặt a=x2+7x+10

=>x2+7x+12=a+2

=a(a+2)-24

=a2+2a-24

=a2+6a-4a-24

=(a2+6a)-(4a+24)

=a(a+6)-4(a+6)

=(a+6)(a-4)

thay a= x2+7x+10 vào ta được

(x2+7x+10+6)(x2+7x+10-4)

=(x2+7x+16)(x2+7x+6)

5 tháng 9 2020

Áp dụng : (A + B)3 = A3 + 3A2B + 3AB2 + B3

11) \(\left(x^2+\frac{3}{xy}\right)^3=\left(x^2\right)^3+3\cdot\left(x^2\right)^2\cdot\frac{3}{xy}+3\cdot x^2\cdot\left(\frac{3}{xy}\right)^2+\left(\frac{3}{xy}\right)^3\)

\(=x^6+3\cdot x^4\cdot\frac{3}{xy}+3\cdot x^2\cdot\frac{9}{x^2y^2}+\frac{27}{x^3y^3}\)

\(=x^6+\frac{9x^4}{xy}+\frac{27\cdot x^2}{x^2y^2}+\frac{27}{x^3y^3}\)

\(=x^6+\frac{9x^3}{y}+\frac{27}{y^2}+\frac{27}{x^3y^3}\)

12) \(\left(x^2+\frac{2}{x}\right)^3=\left(x^2\right)^3+3\cdot\left(x^2\right)^2\cdot\frac{2}{x}+3\cdot x^2\cdot\left(\frac{2}{x}\right)^2+\left(\frac{2}{x}\right)^3\)

\(=x^6+3\cdot x^4\cdot\frac{2}{x}+3\cdot x^2\cdot\frac{4}{x^2}+\frac{8}{x^3}\)

\(=x^6+\frac{6\cdot x^4}{x}+\frac{12\cdot x^2}{x^2}+\frac{8}{x^3}\)

\(=x^6+6x^3+12+8x^3\)

13) \(\left(3y+\frac{x}{2}\right)^3=\left(3y\right)^3+3\cdot3y^2\cdot\frac{x}{2}+3\cdot3y+\left(\frac{x}{2}\right)^2+\left(\frac{x}{2}\right)^3\)

\(=27y^3+\frac{9y^2\cdot x}{2}+9y+\frac{x^2}{4}+\frac{x^3}{8}\)

14) \(\left(1\frac{1}{2}xy+1\right)^3=\left(\frac{3}{2}xy+1\right)^3=\left(\frac{3}{2}xy\right)^3+3\cdot\left(\frac{3}{2}xy\right)^2\cdot1+3\cdot\frac{3}{2}xy\cdot1^2+1^3\)

\(=\frac{27}{8}x^3y^3+3\cdot\frac{9}{4}x^2y^2+\frac{9}{2}xy+1\)

\(=\frac{27}{8}x^3y^3+\frac{27}{4}x^2y^2+\frac{9}{2}xy+1\)

15) \(\left(\frac{x^2}{2}+\frac{2}{y}\right)^3=\left(\frac{x^2}{2}\right)^3+3\cdot\left(\frac{x^2}{2}\right)^2\cdot\frac{2}{y}+3\cdot\frac{x^2}{2}\cdot\left(\frac{2}{y}\right)^2+\left(\frac{2}{y}\right)^3\)

\(=\frac{x^6}{8}+3\cdot\frac{x^4}{4}\cdot\frac{2}{y}+3\cdot\frac{x^2}{2}\cdot\frac{4}{y^2}+\frac{8}{y^3}\)

\(=\frac{x^6}{8}+\frac{3x^4}{2y}+\frac{6x^2}{y^2}+\frac{8}{y^3}\)

Còn 5 bài cuối áp dụng tương tự như thế :)

3 tháng 11 2017

A) \(\left(x-3\right)^2-\left(x+2\right)^2\)

\(=\left(x-3-x-2\right)\left(x-3+x+2\right)\)

\(=-5.\left(2x-1\right)\)

B) \(\left(4x^2+2xy+y^2\right)\left(2x-y\right)-\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)

\(=\left(2x\right)^3-y^3-\left[\left(2x\right)^3+y^3\right]\)

\(=8x^3-y^3-8x^3-y^3\)

\(=-2y^3\)

C) \(x^2+6x+8\)

\(=x^2+6x+9-1\)

\(=\left(x+3\right)^2-1\)

\(=\left(x+3-1\right)\left(x+3+1\right)\)

\(=\left(x+2\right)\left(x+4\right)\)

bài 3 A) \(x^2-16=0\)

\(\left(x-4\right)\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

vậy \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

B) \(x^4-2x^3+10x^2-20x=0\)

\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\left(x^3+10x\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^3+10x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\left(x^2+10\right)=0\\x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

vậy \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

3 tháng 8 2021

x=0

x=2