Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải pt sau
a) \(\sqrt{3x^2-9x+1}=x-2\)
b) \(\sqrt{x^4+x^2+1}+\sqrt{3}\left(x^2+1\right)=3\sqrt{3x}\)
TXĐ: D=R
\(\Leftrightarrow2x^2+6-2\sqrt{2x^2-3x+2}=3\left(x+4\right)\)
\(\Leftrightarrow\frac{2x^2-3x-6}{2}-4=\sqrt{2x^2-3x+2}-4\)
\(\Leftrightarrow\frac{2x^2-3x-14}{2}=\frac{2x^2-3x-14}{\sqrt{2x^2-3x+2}+4}\)
\(\left[{}\begin{matrix}2x^2-3x-14=0\\\frac{1}{2}=\frac{1}{\sqrt{2x^2-3x+2}+4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-2\\x=\frac{7}{2}\end{matrix}\right.\\\text{ pt vô nghiệm}\end{matrix}\right.\)
Vậy ....
\(1+\sqrt{x^2-4x+3}-x=0\)
\(ĐK:\left\{{}\begin{matrix}\sqrt{x^2-4x+3\ge0}\\x-1\ge0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x\ge3\end{matrix}\right.\)
\(PT\Leftrightarrow\sqrt{x^2-4x+3}-\left(x-1\right)=0\)
\(\Leftrightarrow\frac{x^2-4x+3-\left(x-1\right)^2}{\sqrt{x^2-4x+3}+\left(x-1\right)}=0\)
\(\Leftrightarrow2-2x=0\Rightarrow x=1\left(tm\right)\)
\(\Leftrightarrow2\left(x^2+1\right)-2x\sqrt{x^2+1}=5\)
\(\Leftrightarrow x^2+1-2x\sqrt{x^2+1}+x^2=4\)
\(\Leftrightarrow\left(\sqrt{x^2+1}-x\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+1}-x=2\\\sqrt{x^2+1}-x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=x+2\left(x\ge-2\right)\\\sqrt{x^2+1}=x-2\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=x^2+4x+4\\x^2+1=x^2-4x+4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{3}{4}\\x=\frac{3}{4}< 2\left(l\right)\end{matrix}\right.\)
ĐKXĐ: \(x\ge\frac{3}{2}\)
\(\Leftrightarrow\sqrt{5x-1}+\sqrt{2x-3}=\sqrt{3x-2}\)
\(\Leftrightarrow7x-4+2\sqrt{\left(5x-1\right)\left(2x-3\right)}=3x-2\)
\(\Leftrightarrow\sqrt{10x^2-17x+3}=1-2x\)
Do \(x\ge\frac{3}{2}\Rightarrow1-2x< 0\)
Phương trình vô nghiệm
a/ đk: \(\left[{}\begin{matrix}x\le\frac{-5-3\sqrt{5}}{10}\\x\ge\frac{-5+3\sqrt{5}}{10}\end{matrix}\right.\)\(\sqrt{x^2+x+1}+\sqrt{3x^2+3x+2}=\sqrt{5x^2+5x-1}\)
\(\Leftrightarrow\sqrt{x^2+x+1}+\sqrt{3\left(x^2+x+1\right)-1}=\sqrt{5\left(x^2+x+1\right)-6}\)
đặt\(x^2+x+1=t\left(t>0\right)\)
\(\sqrt{t}+\sqrt{3t-1}=\sqrt{5t-6}\)
bình phương 2 vế pt trở thành:
\(t+3t-1+2\sqrt{t\left(3t-1\right)}=5t-6\)
\(\Leftrightarrow2\sqrt{3t^2-t}=t-5\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left(2\sqrt{3t^2-t}\right)^2=\left(t-5\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\11t^2+6t-25=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left[{}\begin{matrix}t=\frac{-3+2\sqrt{71}}{11}\\t=\frac{-3-2\sqrt{71}}{11}\end{matrix}\right.\end{matrix}\right.\)=> không có gtri t nào t/m
vậy pt vô nghiệm
a/ ĐKXĐ: ...
Đặt \(x^2+x+1=a>0\)
\(\sqrt{a}+\sqrt{3a-1}=\sqrt{5a-6}\)
\(\Leftrightarrow4a-1+2\sqrt{3a^2-a}=5a-6\)
\(\Leftrightarrow2\sqrt{3a^2-a}=a-5\) (\(a\ge5\))
\(\Leftrightarrow4\left(3a^2-a\right)=a^2-10a+25\)
\(\Leftrightarrow11a^2+6a-25=0\)
Nghiệm xấu quá, chắc bạn nhầm lẫn đâu đó
b/
Đặt \(x^2+x+1=a>0\)
\(\sqrt{a+3}+\sqrt{a}=\sqrt{2a+7}\)
\(\Leftrightarrow2a+3+2\sqrt{a^2+3a}=2a+7\)
\(\Leftrightarrow\sqrt{a^2+3a}=2\)
\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\)
ĐKXĐ:2<x<5
\(\sqrt{x^2-7x+10}=3x-1(x\ge \frac{1}{3}) \)
<=>\(x^2-7x+10=9x^2-6x+1 \)
<=>\(8x^2+x-9=0\)
<=>\((x-1)(8x+9)=0 \)
<=>x=1(x\(\ge\frac{1}{3} \))
b,
\(\left|3x-5\right|=2x^2+x-3\)(1)
Nếu \(3x-5\ge0\Leftrightarrow x\ge\dfrac{5}{3}\)
Thì pt (1) <=> \(3x-5=2x^2+x-3\)
\(\Leftrightarrow2x^2-2x+2=0\)
\(\Leftrightarrow PT\) vô \(n_o\) (vì \(\Delta< 0\))
Nếu 3x - 5 <0 \(\Leftrightarrow x< \dfrac{5}{3}\)
Thì pt (1) <=> \(5-3x=2x^2+x-3\)
\(\Leftrightarrow2x^2+4x-8=0\)
\(\Leftrightarrow x^2+2x-4=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\)(t/m)
Vậy....