K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2020

\(5x^2+y^2=17+xy\)

<=> \(20x^2+4y^2-4xy=68\)

<=> \(\left(x^2-4xy+4y^2\right)+19x^2=68\)

<=> \(\left(x-2y\right)^2=68-19x^2\) (1)

Do \(VT=\left(x-2y\right)^2\ge0\)=> \(68-19x^2\ge0\)=> \(19x^2\le68\)

=> \(x^2\le\frac{68}{19}\)

Do x nguyên và x2 là số chính phương => x2 \(\in\){0; 1}

<=> x \(\in\){0; 1; -1} 

(tự Thay x vào pt (1) để tìm y)

26 tháng 11 2016

\(5x^2+y^2=17+2xy\)

\(\Leftrightarrow4x^2+\left(x-y\right)^2=17\)

Từ đây ta nhận xét rằng 17 tách thành tổng 2 số chính phương trong đó có 1 số chia hết cho 4. Từ đó ta có 

[4x2, (x - y)2] = (16, 1)

Tới đây thì đơn giản rồi bạn tự làm tiếp nhé

7 tháng 8 2017

\(\sqrt{2x+1}-\sqrt{3x}=x-1\)

ĐK: \(x\ge0\)

\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)

\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)

\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)

\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)

7 tháng 8 2017

ai giải hộ mk ý a vs ý c

6 tháng 4 2020

PT \(\Leftrightarrow\left(y-5\right)x^2-\left(y-1\right)x+y-1=0\)

Với y=5 thì ta không tìm được x thỏa mãn

Với \(y\ne5\), ta có

\(\Delta=-3y^2+26-19\)

Để phương trình có nghiệm thì \(\Delta\ge0\Rightarrow1\le x\le7\)

Từ đó ta thế các giá trị của y vào phương trình tìm x (Bạn tự giải)

5 tháng 3 2019

\(x^2+y^2-xy=x+y+2\)

5 tháng 3 2019

theo đề bài ta có\(y^2-y\left(x+1\right)-x^2-x-2=0\)

xét denta\(\Delta=\left(-\left(x+1\right)\right)^2-4\left(x^2-x-2\right)=3\left(x+1\right)\left(3-x\right)\)

để pt có no => \(\Delta>=0\Rightarrow3>=x>=-1\)

thay x từ -1 đến 3 tính y (loại y ko nguyên)

14 tháng 10 2020

Đặt x=y=-2, pt trở thành: 

\(\left(x+2\right)^2z+\left(z+2\right)^2x+26=0\Leftrightarrow\left(x+z+8\right)\left(xz+4\right)=6\)\(\Rightarrow x+z+8\in U\left(6\right)\)

Giải các TH ta thu được cặp số (x;y) thoả mãn đk là:

(x;y)=(1;-1), (3,-3), (-10;3), (1;-8)

16 tháng 9 2017

đặt x+y=a

xy=b

ntc a-2

16 tháng 9 2017

chụp cho tớ 20 bài bđt đi chi

19 tháng 8 2018

\(5x^4+y^2-4x^2y-85=0\)

\(\Leftrightarrow x^4=4x^2-4x^2y+y^2-85=0\)

\(\Leftrightarrow x^4+\left(2x^2-y\right)^2=85\)

\(\Leftrightarrow x^4\in\left\{3^4;2^4;1^4;0^4\right\}\)

tiếp tục xét lần lượt các trường hợp:

+) nếu \(x^4=0^4\Rightarrow x=0\Rightarrow y^2=85\Rightarrow y\in\varnothing\)

+) nếu \(x^4=1^4\Rightarrow x=\pm1\Rightarrow\left(y-2\right)^2=84\Rightarrow y\in\varnothing\)

+) nếu \(x^4=2^4\Rightarrow x=\pm2\Rightarrow\left(y-8\right)^2=69\Rightarrow x\in\varnothing\)

+) nếu \(x^4=3^4\Rightarrow x=\pm3\Rightarrow\left(y-18\right)^2=2^2\)

\(\Leftrightarrow\orbr{\begin{cases}y-18=2\\y-18=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}y=20\\y=16\end{cases}}}\)( nhận ) 

P/s nhận cả hai nhé