K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2x^2+4x+3y^2=19\)

\(\Leftrightarrow2\left(x^2+2x+1\right)+3y^2=21\)

\(\Leftrightarrow2\left(x+1\right)^2+3y^2=21\)

Mà \(2\left(x+1\right)^2;3y^2\ge0\)

\(\Rightarrow0\le3y^2\le21\)

\(\Rightarrow0\le y^2\le7\)Mà \(y\in Z\Rightarrow y^2\in Z\)

\(\Rightarrow y^2\in\left\{0,1,4\right\}\Rightarrow y\in\left\{0,\pm1,\pm2\right\}\)

Ta có các trường hợp  

y01-1-22
y201144
3y20331212
2(x+1)221181899
(x+1)221/2(loại)999/2(loại)9/2(loại)

x=2,-4 

Vậy \(\left(x,y\right)=\left(2;1\right),\left(2;-1\right),\left(-4;1\right),\left(-4;-1\right)\)

13 tháng 1 2018

pt <=> (2x^2+4x+2)+3y^2=21

<=> 2.(x+1)^2+3y^2 = 21

=> 3y^2 < = 21

Mà 3y^2 >= 0 => 0 < = 3y^2 < = 21

=> 3y^2 thuộc {0;3;6;9;12;15;18;21}

=> y^2 thuộc {0;1;2;3;4;5;6;7}

Mà 21 lẻ , 2.(x+1)^2 chẵn => 3y^2 lẻ => y^2 lẻ

=> y^2 thuộc {1;3;5;7} => y^2 = 1 ( vì y^2 là số chính phương )

=> x^2=9 ; y^2=1

=> (x;y) thuộc {(-1;-1);(-1;1);(1;1);(1;-1)}

Tk mk nha

6 tháng 7 2016

Bài 1 : (Mình chỉ tìm GTLN được thôi nha, bạn xem lại đề)

x2 + y2 + z2 < 3 ; mà x,y,z > 0 => \(\left(x;y;z\right)\in\left\{0;1\right\}\)

Ta thấy: (xy+1)-(x+y) = (1-x).(1-y)>=0
=> xy+1 > x+y
Tương tự:
yz+1 > y+z
xz+1 > z+x

Ta có:
(x+y+z).(1/(xy+1)+1/(yz+1)+1/(zx+1)) <  x/(yz+1)+y/(zx+1)+z/(xy+1) 
                                                              x/(yz+1) + y/(zx+y) +z/(xy+z)
                                                              = x(1/(yz+1) -x/(xz+y) -y/(xy+z))
                                                              < x(1- z/(z+y) -y/(y+z))+5
                                                              = 5

Vậy GTLN là 5

31 tháng 1 2017

bạn viết dễ hiểu hơn dc ko

16 tháng 1 2017

\(x^2-xy+y^2=3\)

\(\Leftrightarrow2x^2-2xy+2y^2=6\)

\(\Leftrightarrow\left(x-y\right)^2+x^2+y^2=1+1+4\)

\(\Rightarrow\left(\left(x-y\right)^2,x^2,y^2\right)=\left(1,1,4;1,4,1;4,1,1\right)\)

\(\Rightarrow\left(x,y\right)=\left(-1,-2;1,2;2,1;-2,-1;-1,1;1,-1\right)\)

30 tháng 7 2018

viết lại pt dưới dạng 

\(x^2-2x\left(y+2\right)+\left(2y^2+8\right)=0.\)

\(\Delta`x=\left(y+2\right)^2-\left(2y^2+8\right)=0\)

\(\Delta`=y^2+4y+4-2y^2-8=-y^2+4y-4=0\)

\(\Delta`=-\left(y-2\right)^2=0\Leftrightarrow y=2\)

thay y=2 

\(x^2-4x+8-4x=-8\)

\(x^2-8x+16=0\)

\(\left(x-4\right)^2=0\Leftrightarrow x=4\)

30 tháng 7 2018

        \(x^2-2xy+2y^2-4x=-8\)

\(\Leftrightarrow x^2-2xy+2y^2-4x+8=0\)

\(\Leftrightarrow2x^2-4xy+4y^2-8x+16=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(x-4\right)^2=0\)

Ta có: \(\left(x-2y\right)^2+\left(x-4\right)^2\ge0\) \(\forall x;y\)

Dấu "=" xảy ra: \(\Leftrightarrow\hept{\begin{cases}x-2y=0\\x-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2y\\x=4\end{cases}\Leftrightarrow\hept{\begin{cases}y=2\\x=4\end{cases}}}\) (thỏa mãn)

Vậy x = 4 và y = 2

Bài bạn gửi hay đấy .Chúc bạn học tốt.

23 tháng 1 2017

1,10x2+29xy+21y2=2001

=>10x2+15xy+14xy+21y2=2001

=>5x(2x+3y)+7y(2x+3y)=2001

=>(5x+7y)(2x+3y)=2001=1.2001=2001.1=3.667=667.3=......(còn nghiệm âm nữa) 

tới đây thì phải giải HPT thôi(dài) ,tạm thời mình chưa nghĩ ra cách nào ngắn hơn