Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x = -2 vào phương trình, ta có:
\(4.\left(-2\right)^2-25+q^2+4q.\left(-2\right)=0\)
\(\Leftrightarrow q^2-8q-9=0\Leftrightarrow\left(q-9\right)\left(q+1\right)=0\Leftrightarrow\orbr{\begin{cases}q=-9\\q=1\end{cases}}\)
Tôi nghĩ là như này :)) Sai thì chịu nhá :((
Ta có pt : \(\left|x+1\right|+3\left|x-1\right|=x+2+\left|x\right|+2\left|x-2\right|\) (1)
Ta thấy VT pt (1) là : \(\left|x+1\right|+3\left|x-1\right|\ge0\forall x\)
Nên VP pt (1) cũng phải lớn hơn bằng 0
Có nghĩa là \(x+2\ge0\) \(\Leftrightarrow x\ge-2\)
Khi đó : \(\left\{{}\begin{matrix}\left|x+1\right|=-\left(x+1\right)\\3\left|x-1\right|=3\left(1-x\right)\\\left|x\right|=-x\\2\left|x-2\right|=2\left(2-x\right)\end{matrix}\right.\)
Vậy pt (1) \(\Leftrightarrow-x-1+3-3x=x+2-x+4-2x\)
\(\Leftrightarrow2x=-4\Leftrightarrow x=-2\) ( thỏa mãn )
Vậy \(x=-2\) thỏa mãn pt.
\(\left|x+1\right|\) | - | + | + | + | + |
3\(\left|x-1\right|\) | - | - | + | + | + |
\(\left|x\right|\) | - | - | - | + | + |
\(2\left|x-2\right|\) | - | - | - | - | + |
PT | 2x-4=5x-2 | 2x-4=5x-2 | -4x+2=2x-2 | -4x+2=-2x+6 |
-1 0 1 2
1) x=-2/3>-1( loại)
2)
Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)
\(6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}=0\)
\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)+7\left(x+\frac{1}{x}\right)-36=0\)
Đặt \(x+\frac{1}{x}=a\) (\(\left|a\right|\ge2\)) \(\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)
\(6\left(a^2-2\right)+7a-36=0\)
\(\Leftrightarrow6a^2+7a-48=0\)
Nghiệm xấu
\(2x^2+4x+3y^2=19\)
\(\Leftrightarrow2\left(x^2+2x+1\right)+3y^2=21\)
\(\Leftrightarrow2\left(x+1\right)^2+3y^2=21\)
Mà \(2\left(x+1\right)^2;3y^2\ge0\)
\(\Rightarrow0\le3y^2\le21\)
\(\Rightarrow0\le y^2\le7\)Mà \(y\in Z\Rightarrow y^2\in Z\)
\(\Rightarrow y^2\in\left\{0,1,4\right\}\Rightarrow y\in\left\{0,\pm1,\pm2\right\}\)
Ta có các trường hợp
x=2,-4
Vậy \(\left(x,y\right)=\left(2;1\right),\left(2;-1\right),\left(-4;1\right),\left(-4;-1\right)\)
pt <=> (2x^2+4x+2)+3y^2=21
<=> 2.(x+1)^2+3y^2 = 21
=> 3y^2 < = 21
Mà 3y^2 >= 0 => 0 < = 3y^2 < = 21
=> 3y^2 thuộc {0;3;6;9;12;15;18;21}
=> y^2 thuộc {0;1;2;3;4;5;6;7}
Mà 21 lẻ , 2.(x+1)^2 chẵn => 3y^2 lẻ => y^2 lẻ
=> y^2 thuộc {1;3;5;7} => y^2 = 1 ( vì y^2 là số chính phương )
=> x^2=9 ; y^2=1
=> (x;y) thuộc {(-1;-1);(-1;1);(1;1);(1;-1)}
Tk mk nha