Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ne\frac{m}{2},x\ne\frac{1}{2}\)
Pt <=> (x+2)(2x-1)=(2x-m)(x+1)
<=> \(2x^2+3x-2=2x^2-mx+2x-m\)
<=> (m+1)x=2-m (1)
Phương trình ban đầu có nghiệm duy nhất khi và chỉ khi phương trình (1) có nghiệm duy nhất khác m/2 và khác 1/2
<=> \(\hept{\begin{cases}m+1\ne0\\\frac{\left(m+1\right)m}{2}\ne2-m\\\frac{\left(m+1\right).1}{2}\ne2-m\end{cases}}\)
Em làm tiếp nhé!
Biến đổi bất phương trình thành: \(\left(x^2-2xy+y^2\right)+\left(y^2-4x+4\right)+4\le0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-2\right)^2+4\le0\) (1)
Ta có: \(\left(x-y\right)^2\ge0;\left(y-2\right)^2\ge0\)
Suy ra \(\Leftrightarrow\left(x-y\right)^2+\left(y-2\right)^2+4\ge4\) trái với (1)
Vậy không tồn x, y thỏa mãn bất pt trên.
a) \(\frac{6}{x^2+4x}+\frac{3}{2x+8}=\frac{6.2}{2x\left(x+4\right)}+\frac{3x}{2x\left(x+4\right)}=\frac{12+3x}{2x\left(x+4\right)}=\frac{3\left(x+4\right)}{2x\left(x+4\right)}=\frac{3}{2x}\)
c) \(\frac{-5}{4+2y}+\frac{y-2}{2y+y^2}=\frac{-5.y}{2y\left(y+2\right)}+\frac{2\left(y-2\right)}{2y\left(y+2\right)}=\frac{-5y+2y-4}{2y\left(y+2\right)}=\frac{-3y-4}{2y\left(y+2\right)}\)
d) \(\frac{x-1}{x^2-2xy}+\frac{3}{2xy-x^2}=\frac{x-1}{x\left(x-2y\right)}-\frac{3}{x\left(x-2y\right)}=\frac{x-1-3}{x\left(x-2y\right)}=\frac{x-4}{x\left(x-2y\right)}\)
Từ phương trình ta thấy rằng x phải là số lẻ
Ta có: \(x=2k+1\)
\(\Rightarrow\left(2k+1\right)^2=2y^2-8y+3\)
\(\Leftrightarrow4k^2+4k+1=2y^2-8y+3\)
\(\Leftrightarrow2k^2+2k=y^2-4y+1\)
\(\Leftrightarrow2k\left(k+1\right)=y^2+1-4y\)
Ta nhận xét thấy VT chia hết cho 4
Vế phải không chia hết cho 4 vì số chính phương chỉ có 2 dạng là 4n và 4n+1 nên y2 + 1 - 4y không thể chia hết cho 4 được
Vậy phương trình đã cho vô nghiệm
Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)
\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)
Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)
\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)
\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)
viết lại pt dưới dạng
\(x^2-2x\left(y+2\right)+\left(2y^2+8\right)=0.\)
\(\Delta`x=\left(y+2\right)^2-\left(2y^2+8\right)=0\)
\(\Delta`=y^2+4y+4-2y^2-8=-y^2+4y-4=0\)
\(\Delta`=-\left(y-2\right)^2=0\Leftrightarrow y=2\)
thay y=2
\(x^2-4x+8-4x=-8\)
\(x^2-8x+16=0\)
\(\left(x-4\right)^2=0\Leftrightarrow x=4\)
\(x^2-2xy+2y^2-4x=-8\)
\(\Leftrightarrow x^2-2xy+2y^2-4x+8=0\)
\(\Leftrightarrow2x^2-4xy+4y^2-8x+16=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(x-4\right)^2=0\)
Ta có: \(\left(x-2y\right)^2+\left(x-4\right)^2\ge0\) \(\forall x;y\)
Dấu "=" xảy ra: \(\Leftrightarrow\hept{\begin{cases}x-2y=0\\x-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2y\\x=4\end{cases}\Leftrightarrow\hept{\begin{cases}y=2\\x=4\end{cases}}}\) (thỏa mãn)
Vậy x = 4 và y = 2
Bài bạn gửi hay đấy .Chúc bạn học tốt.