K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2018

Phân tích được : \(\left(x^2+\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2=-10\)

<=> \(\left(x^2-y+1\right)\left(x^2+y\right)=-10\)

Mà \(-10=-1.10=-10.1=-2.5=-5.2\)

Mình làm 1 trường hợp còn lại bạn làm tương tự nha : 

VD cặp số đầu tiên là -1.10 => \(\hept{\begin{cases}x^2-y+1=-1\\x^2+y=10\end{cases}}\)

=> \(\hept{\begin{cases}x^2-y=-2\\x^2+y=10\end{cases}}\)=> hoặc x=-2 y=6 hoặc x=2 y=6

14 tháng 3 2018

Ta có : \(x^4+x^2-y^2+y+10=0\)

\(\Leftrightarrow\left(x^4-y^2\right)+\left(x^2+y\right)=-10\)

\(\Leftrightarrow\left(x^2+y\right)\left(x^2-y\right)+\left(x^2+y\right)=-10\)

\(\Leftrightarrow\left(x^2+y\right)\left(x^2-y+1\right)=-10\)

Vậy nên \(x^2+y;x^2-y+1\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Ta có bảng:

\(x^2+y\)-1-2-5-1012510
\(x^2-y+1\)10521-10-5-2-1
y-5-3-3-56446
x\(\pm2\)\(\pm1\)(L)(L)(L)(L)\(\pm1\)\(\pm2\)
(x;y)(2;-5) , (-2;-5)(1;-3) , (-1; -3)    (1;4) , (-1;4)(2;6) , (-2;6)

Vậy có 8 cặp số (x;y) thỏa mãn.

29 tháng 3 2018

\(\Leftrightarrow\left(x^4+x^2+\frac{1}{4}\right)-\left(y^2-y+\frac{1}{4}\right)+10=0\)

\(\Leftrightarrow\left(x^2-y+1\right)\left(x^2+y\right)=-10\)

đến đây cậu lập bảng là ra nhé

8 tháng 6 2017

=>xy(1-1+2-4)=10

=>xy(-2)=10

=>xy=-5

tự tìm

8 tháng 6 2017

=> xy( 1-1+2-1) = 10

=> xy(-2) = 10

=> xy = -5

Còn nữa

\(a,-x^3+x^2+4=0\)

\(-\left(x^3-x^2-4\right)=0\)

\(x^3-2x^2+x^2+2x-2x-4=0\)

\(x^2\left(x-2\right)+x\left(x+2\right)-2\left(x+2\right)=0\)

\(x^2\left(x-2\right)+\left(x+2\right)\left(x-2\right)=0\)

\(\left(x-2\right)\left(x^2+x+2\right)=0\)

Vì \(x^2+x+2>0\left(\forall x\right)\)

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\)

23 tháng 6 2019

\(2x^2+2xy+y^2=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+x^2=0\)

\(\Leftrightarrow\left(x+y\right)^2+x^2=0\)

\(\Leftrightarrow x=y=0\)

23 tháng 8 2020

?????