Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5a^2+2b^2=11ab
<=>5a^2+2b^2-11ab=0
<=>5a^2-10ab-ab+2b^2=0
<=>5a(a-2b)-b(a-2b)=0
<=>(5a-b)(a-2b)=0
<=>5a-b=0 hoặc a-2b=0 <=> 5a=b hoặc a=2b
Nhưng 0 < b/5 < a => b < 5a nên 5a=b là vô lí
Thay a=2b vào ,ta có M = 4.(2b)^2-5b^2/(2b)^2+3.2b.b=11b^2/10b^2=11/10
M = x^2 + y^2 - xy - x + y + 1
12M = 12x^2 + 12y^2 - 12xy - 12x + 12y + 12
12M = 3(4x^2 + y^2 + 1 - 4xy - 4x + 2y) + 9y^2 + 6y + 9
12M = 3(2x - y - 1)^2 + (3y + 1)^2 + 8
12M > 8
tự xét dấu =
M = x2 + y2 - xy - x + y +1
2M = 2x2 + 2y2 - 2xy - 2x + 2y + 2
2M = ( x2 - 2xy + y2 ) + ( x2 -2x +1 ) + ( y2 + 2y + 1)
2m = ( x - y )2 + ( x-1 )2 + ( y + 1 )2
Ta có \(\left(x-y\right)^2\ge\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow2M\ge0\forall x;y\)
Dấu "=" xảy ra khi x - y = 0; x - 1 = 0; y + 1 = 0
<=> x = y ; x = 1; y = -1 ( vô lí )
Vậy không tồn tại giá trị nhỏ nhất nào của biểu thức M
Mình cũng mới hỏi câu này luôn ấy, mình có cách làm nhưng sợ không đúng thôi.
P = x4y4 + x4 + y4 + 1 + 12x2y2 – 16xy – 4
P = x4y4 + x4 + y4 + 1 + 16x2y2 – 16xy + 4 – 4x2y2 – 8
P = x4y4 + x4 + y4 + 1 + (4xy – 2)2 – 4x2y2 – 8
P = (x4 – 2x2y2 + y4) + (x4y4 – 2x2y2 + 1) – 8 + (4xy – 2)2
P = (x2 – y2)2 + (x2y2 – 1)2 – 8 + (4xy – 2)2
P = (x + y)2(x – y)2 + (xy + 1)2(xy – 1)2 + (4xy – 2)2 – 8
P = 4(x – y)2 + (xy + 1)2(xy – 1)2 + 4(2xy – 1)2 – 8
MinP = Min 4(x – y)2 + min (xy + 1)2(xy – 1)2 + min 4(2xy – 1)2 – 8
Min 4(x – y)2 = 0 => x – y = 0 => x = y = 1 => MinP = – 4
Min (xy + 1)2(xy – 1)2 = 0 =>
TH1: xy = -1 (không có x,y thỏa mãn)
TH2: xy = 1 => x = y = 1 => Min P = – 4
Min 4(2xy – 1)2 = 0 => xy = \(\frac{1}{2}\)(không có x,y thỏa mãn)
Vậy thì kết quả là -4, Violympic chưa mở nên mình chưa thử kết quả được, thân ái.
Câu 1: xin sửa đề :D
CM: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)là 1 scp
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)
\(=\left(n^2+3n+1\right)^2\)là scp
\(15\left(2a^2-1\right)+5\left(3-\frac{1}{5a}-6a^2\right)\)
\(=30a^2-15+15-\frac{1}{a}-30a^2\)
\(=-\frac{1}{a}\)
tại \(a=2017\)=> M= \(\frac{-1}{a}=\frac{-1}{2017}\)
\(\left(x-y\right)\left(x^2+xy+y^2\right)+y^3\)
\(=x^3-y^3+y^3\)
\(=x^3\)
ại \(x=2\)=> N= \(x^3=2^3=8\)