K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2020

M = x^2 + y^2 - xy - x + y + 1

12M = 12x^2 + 12y^2 - 12xy - 12x + 12y + 12

12M = 3(4x^2 + y^2 + 1 - 4xy - 4x + 2y) + 9y^2 + 6y + 9

12M = 3(2x - y - 1)^2 + (3y + 1)^2 + 8

12M > 8

tự xét dấu = 

18 tháng 4 2020

M = x2 + y2 - xy - x + y +1

2M = 2x2 + 2y- 2xy - 2x + 2y + 2

2M = ( x2 - 2xy + y2 ) + ( x2 -2x +1 ) + ( y2 + 2y + 1)

2m = ( x - y )2 + ( x-1 )2 + ( y + 1 )2

Ta có \(\left(x-y\right)^2\ge\forall x;y\)

          \(\left(x-1\right)^2\ge0\forall x\)

          \(\left(y+1\right)^2\ge0\forall y\)

\(\Rightarrow2M\ge0\forall x;y\)

Dấu "=" xảy ra khi x - y = 0; x - 1 = 0; y + 1 = 0

                      <=> x = y ; x = 1; y = -1 ( vô lí )

Vậy không tồn tại giá trị nhỏ nhất nào của biểu thức M

27 tháng 12 2021

Bài 1: 

\(A=x^2+6x+9+x^2-10x+25\)

\(=2x^2+4x+34\)

\(=2\left(x^2+2x+17\right)\)

\(=2\left(x+1\right)^2+32>=32\forall x\)

Dấu '=' xảy ra khi x=-1

27 tháng 12 2021

giải cho mình bài 2 lun đc ko

 

NV
22 tháng 4 2021

\(A=x^2+y^2+\left(\dfrac{1}{2}\right)^2-2xy+2.\dfrac{1}{2}x-2.\dfrac{1}{2}.y+\dfrac{3}{4}\)

\(A=\left(x-y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(A_{min}=\dfrac{3}{4}\) khi \(x-y+\dfrac{1}{2}=0\)

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs

12 tháng 5 2021

Áp dụng bất đẳng thức Svacxo và bất đẳng thức \(\frac{1}{4ab}\ge\frac{1}{\left(a+b\right)^2}\)ta có :

\(Q=\frac{2}{x^2+y^2}+\frac{2}{2xy}+\frac{4}{2xy}=2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{8}{4xy}\)

\(\ge2\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+\frac{8}{\left(x+y\right)^2}=\frac{2.4}{2^2}+\frac{8}{2^2}=\frac{16}{4}=4\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=1\)

Vậy min Q = 4 khi x = y = 1

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Lời giải:

a. Áp dụng BĐT Cô-si:

$x^4+9\geq 6x^2$

$y^4+9\geq 6y^2$

$\Rightarrow x^4+y^4+18\geq 6(x^2+y^2)$

$A+18\geq 36$

$A\geq 18$

Vậy GTNN của $A$ là $18$ khi $x^2=y^2=3$

b.

$(x-y)^2\geq 0$

$\Leftrightarrow x^2+y^2\geq 2xy$

$\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2$

$\Leftrightarrow 12\geq (x+y)^2$

$\Rightarrow B=x+y\leq \sqrt{12}$. Vậy $B$ max bằng $\sqrt{12}$ khi $x=y=\sqrt{3}$

$(x-y)^2\geq 0$

$\Leftrightarrow x^2+y^2\geq 2xy$

$\Leftrightarrow 6\geq 2C$

$\Leftrightarrow C\leq 3$. Vậy $C_{\max}=3$. Giá trị này đạt tại $x=y=-\sqrt{3}$

20 tháng 4 2023

\(M=x^2+y^2-xy-x+y+1\)

\(4M=4x^2+4y^2-4xy-4x+4y+4\)

\(=\left(4x^2+y^2+1-4xy-4x+2y\right)+\left(3y^2+2y+3\right)\)

\(=\left(2x-y-1\right)^2+3\left(y^2+\dfrac{2}{3}y+\dfrac{1}{9}\right)+\dfrac{8}{3}\)

\(=\left(2x-y-1\right)^2+3\left(y+\dfrac{1}{3}\right)^2+\dfrac{8}{3}\ge\dfrac{8}{3}\)

\(\Rightarrow M\ge\dfrac{2}{3}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}2x-y-1=0\\y+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=-\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(MinM=\dfrac{2}{3}\)