Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+5x^2-36=0\)
\(\Leftrightarrow x^4-4x^2+9x^2-36=0\)
\(\Leftrightarrow x^2\left(x^2-4\right)+9\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+9\right)=0\)
Dễ thấy: \(x^2+9\ge9>0\forall x\) (vô nghiệm)
SUy ra \(x-2=0;x+2=0\Rightarrow x=2;x=-2\)
Đặt t = x2 ( t ≥ 0)
ta có phương trình: t2 + 5t – 36 = 0. Δt = 25 4.1.(-36) = 169
→ t1 = 4 (tmđk); t2 = -9 (loại). Với t = 4 → x2 = 4 → x = 2
ĐK : \(x\ge2\)
\(pt\Leftrightarrow\left(x^2+5x+8\right)^2=4\left(x-2\right)\)
\(\Leftrightarrow x^4+25x^2+64+10x^3+80x+16x^2=4x-8\)
\(\Leftrightarrow x^4+10x^3+41x^2+80x+64=4x-8\)
\(\Leftrightarrow x^4+10x^3+41x^2+76x+72=0\)
\(\Leftrightarrow\left(x^4+10x^3+25x^2\right)+\left(16x^2+76x+\frac{361}{4}\right)-\frac{81}{4}=0\)
\(\Leftrightarrow\left(x^2+5x\right)^2+\left(4x+\frac{19}{2}\right)^2-\frac{81}{4}=0\)(*)
Theo đkxđ thì \(x\ge2\) nên \(\left(x^2+5x\right)^2\ge\left(2^2+5.2\right)^2=196>\frac{81}{4}\)
Nên \(\left(x^2+5x\right)^2+\left(4x+\frac{19}{2}\right)^2>\frac{81}{4}\) nên \(\left(x^2+5x\right)^2+\left(4x+\frac{19}{2}\right)^2-\frac{81}{4}>0\)
Từ đó => (*) không xảy ra hay pt trên vô nghiệm
Đặt \(\sqrt{x^2+4}=t\left(t>0\right)\)
Ta có phương trình: \(2x^2+t^2=3xt\)
\(\Leftrightarrow t^2-3xt+2x^2=0\)
Xem phương trình trên có biến t và tham số x
\(\Delta=\left(3x\right)^2-4.2x^2=x^2\)
Phương trình có 2 nghiệm: \(\hept{\begin{cases}t_1=x\\t_2=2x\end{cases}}\)
Với t=x, Ta có: \(\sqrt{x^2+4}=x\)(phương trinh vô nghiệm)
Với t=2x, Ta có \(\sqrt{x^2+4}=2x\Leftrightarrow\hept{\begin{cases}x\ge0\\x^2+4=4x^2\end{cases}\Leftrightarrow x=\frac{2\sqrt{3}}{3}}\)
dk \(x\ge-\frac{4}{3}\)
\(x^2-5x+4=8\sqrt{3x+4}-32\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=8\left(\sqrt{3x+4}-4\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)-8\frac{\left(\sqrt{3x+4}-4\right)\left(\sqrt{3x+4}+4\right)}{\sqrt{3x+4}+4}=0\)
\(\left(x-1\right)\left(x-4\right)-8.\frac{3\left(x-4\right)}{\sqrt{3x+4}+4}=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1-\frac{24}{\sqrt{3x+4}+4}=0\right)\)
đến đây để rồi tự làm nhé ^^
bài toán của mk k có -23 ở vế sau ạ