K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2020

\(ĐK:x\ge-\frac{3}{2}\)

Ta có:

\(x^2+5x+8=3\sqrt{2x^3+5x^2+7x+6}\)

\(\Leftrightarrow\left(x^2+x+2\right)+2\left(2x+3\right)=3\sqrt{2x^3+5x^2+7x+6}\)

\(\Leftrightarrow\left(x^2+x+2\right)+2\left(2x+3\right)=3\sqrt{\left(x^2+x+2\right)\left(2x+3\right)}\)

Đặt \(\sqrt{x^2+x+2}=a;\sqrt{2x+3}=b\)

Khi đó: \(a^2+2b^2=3ab\Leftrightarrow\left(a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow\sqrt{x^2+x+2}=\sqrt{2x+3}\left(hoac\right)\sqrt{x^2+x+2}=2\sqrt{2x+3}\)

Với \(\sqrt{x^2+x+2}=\sqrt{2x+3}\Rightarrow x^2+x+2=2x+3\Leftrightarrow x^2-x-1=0\Leftrightarrow x=\frac{1+\sqrt{5}}{2};x=\frac{1-\sqrt{5}}{2}\)Tự đối chiếu điều kiện xác định -,-

\(\sqrt{x^2+x+2}=2\sqrt{2x+3}\Rightarrow x^2+x+2=4\left(2x+3\right)\Leftrightarrow x^2-7x-10=0\)

Tới đây bí rồi huhu

25 tháng 1 2018

bình phương hai vế rồi rút gọn, phân tích thành nhân tử

\(\left(x+1\right)\left(x^3-9x^2+7x+10\right)=0\)0

NV
9 tháng 8 2020

6.

Đặt \(\left\{{}\begin{matrix}\sqrt{5x^2+6x+5}=a\\4x=b\end{matrix}\right.\)

\(\Rightarrow a\left(a^2+1\right)=b\left(b^2+1\right)\)

\(\Leftrightarrow a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{5x^2+6x+5}=4x\left(x\ge0\right)\)

\(\Leftrightarrow5x^2+6x+5=16x^2\)

\(\Leftrightarrow11x^2-6x-5=0\)

\(\Rightarrow x=1\)

NV
9 tháng 8 2020

4. Bạn coi lại đề (chính xác là pt này ko có nghiệm thực)

5.

\(\Leftrightarrow x^2+x+6-\left(2x+1\right)\sqrt{x^2+x+6}+6x-6=0\)

Đặt \(\sqrt{x^2+x+6}=t>0\)

\(t^2-\left(2x+1\right)t+6x-6=0\)

\(\Delta=\left(2x+1\right)^2-4\left(6x-6\right)=\left(2x-5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\frac{2x+1+2x-5}{2}=2x-2\\t=\frac{2x+1-2x+5}{2}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+6}=2x-2\left(x\ge1\right)\\\sqrt{x^2+x+6}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+6=4x^2-8x+4\left(x\ge1\right)\\x^2+x+6=9\end{matrix}\right.\)

6 tháng 4 2017

Cau nay hinh nhu X cug = 1

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

1. ĐKXĐ: $\xgeq \frac{-6}{5}$

PT \(\Leftrightarrow [\sqrt{2x^2+5x+7}-(x+3)]+[(x+2)-\sqrt{5x+6}]+(x^2-x-2)=0\)

\(\Leftrightarrow \frac{x^2-x-2}{\sqrt{2x^2+5x+7}+x+3}+\frac{x^2-x-2}{x+2+\sqrt{5x+6}}+(x^2-x-2)=0\)

\(\Leftrightarrow (x^2-x-2)\left(\frac{1}{\sqrt{2x^2+5x+7}+x+3}+\frac{1}{x+2+\sqrt{5x+6}}+1\right)=0\)

Với $x\geq \frac{-6}{5}$, dễ thấy biểu thức trong ngoặc lớn hơn hơn $0$

Do đó: $x^2-x-2=0$

$\Leftrightarrow (x+1)(x-2)=0$

$\Leftrightarrow x=-1$ hoặc $x=2$ (đều thỏa mãn)

 

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

Bài 2: Tham khảo tại đây:

Giải pt \(\sqrt{2x+1} - \sqrt[3]{x+4} = 2x^2 -5x -11\) - Hoc24

NV
20 tháng 7 2020

7.

ĐKXĐ: ...

\(\Leftrightarrow10\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=3\left(x^2+2\right)\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow10ab=3\left(a^2+b^2\right)\)

\(\Leftrightarrow3a^2-10ab+3b^2=0\)

\(\Leftrightarrow\left(a-3b\right)\left(3b-a\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=3b\\3a=b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-x+1}=3\sqrt{x+1}\\3\sqrt{x^2-x+1}=\sqrt{x-1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=9x+9\\9x^2-9x+9=x-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-10x-8=0\\9x^2-10x+10=0\end{matrix}\right.\) (casio)

NV
20 tháng 7 2020

6.

ĐKXĐ: ...

\(\Leftrightarrow2x^2+4=3\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow2a^2+2b^2=3ab\)

\(\Leftrightarrow2a^2-3ab+2b^2=0\)

Phương trình vô nghiệm (vế phải là \(5\sqrt{x^3+1}\) sẽ hợp lý hơn)

16 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

16 tháng 4 2017

a) \(x^3-2x^2-5x+6=0\)

\(\Leftrightarrow\left(x^3-2x^2+x\right)-\left(6x-6\right)=0\\ \Leftrightarrow x\left(x-1\right)^2-6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x-1\right)-6\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-x-6\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\\x+2=0\end{matrix}\right.\\ \left[{}\begin{matrix}x=1\\x=3\\x=-2\end{matrix}\right.\)

Vậy ..............................

b) Đặt \(2x^2+7x-3=a\) theo cách đặt ta có :

\(\left(a-5\right)\cdot a=6\)

\(\Leftrightarrow a^2-5a-6=0\)

nhận xét : \(a-b+c=1-\left(-5\right)-6=0\)

\(\Rightarrow a_1=1\)

\(a_2=\dfrac{-6}{1}=-6\)

Với \(a=a_1=1\) \(\Rightarrow2x^2+7x-3=1\)

\(\Leftrightarrow2x^2+7x-4=0\)

\(\Delta=7^2-4\cdot2\cdot\left(-4\right)=49+32=81\) ( \(\sqrt{\Delta}=\sqrt{81}=9\) )

\(\Delta>0\) nên pt có 2 nghiệm phân biệt :

\(x_1=\dfrac{-7+9}{2\cdot2}=\dfrac{1}{2}\)

\(x_2=\dfrac{-7-9}{2\cdot2}=-4\)

Với \(a=a_2=-6\) \(\Rightarrow2x^2+7x-3=-6\\ \Leftrightarrow2x^2+7x+3=0\)

\(\Delta=7^2-4\cdot2\cdot3=49-24=25\)

\(\sqrt{\Delta}=\sqrt{25}=5\)

\(\Delta>0\) nên pt có 2 nghiệm phân biệt :

\(x_3=\dfrac{-7+5}{2\cdot2}=-\dfrac{1}{2}\)

\(x_4=\dfrac{-7-5}{2\cdot2}=-3\)

Vậy \(x_1=\dfrac{1}{2};x_2=-4;x_3=\dfrac{-1}{2};x_4=-3\) là các giá trị cần tìm