Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trung bình cộng của hai so bằng 135. Biết một trong hai số la 246. Tìm số kia
\(2x^2+2x+1=\sqrt{4x+1}\)
\(\left(2x^2+2x+1\right)^2=\left(\sqrt{4x+1}\right)^2\)
\(4x^4+8x^3+8x^2+4x+1=4x+1\)
\(\Leftrightarrow4x^4+8x^3+8x^2=0\)
\(\Leftrightarrow4x^2\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow x=0\)
Ko chắc đou:( Nhất là cái đk ý, phải xét đủ thứ cái ... nào là VT>=0 với bt trong căn >=0.. ko biết có nhầm lẫn hay ko nx!
ĐK: \(x\ge\sqrt{2}\)
PT <=> \(4x^2+3x-\frac{9}{2}=\sqrt{x^2-2}-\frac{1}{2}\)
\(\Leftrightarrow\left(4x-3\right)\left(x+\frac{3}{2}\right)=\frac{x^2-\left(\frac{3}{2}\right)^2}{\sqrt{x^2-2}+\frac{1}{2}}\)
\(\Leftrightarrow\left(x+\frac{3}{2}\right)\left(4x-3-\frac{x-\frac{3}{2}}{\sqrt{x^2-2}+\frac{1}{2}}\right)=0\)
Giải cái ngoặc to: \(4x-3-\frac{2x-3}{2\sqrt{x^2-2}+1}=0\Leftrightarrow\left(8x-6\right)\sqrt{x^2-2}+2x=0\)
Dễ thấy VT >0 với mọi \(x\ge\sqrt{2}\) do vậy cái ngoặc to vô nghiệm.
\(\Rightarrow x=-\frac{3}{2}\)
\(x^2-2x+4=3\sqrt{3x^2-6x+4}\)
\(< =>\left(x^2-2x+1\right)-3\sqrt{3x^2-6x+4}=0\)
Đến đây bạn chỉ cần xét th = 0 với khác 0 thôi
gợi ý nhé
a (=) 2x.( 4x2+1) = (3x+2). căn(3x+1) ( x>=-1/3)
đặt 2x =a
căn (3x+1) = b (b>=0)
ta có hpt sau a.(a2 +1)=b.(b2+1) (1)
3a-2b2= -2 (2)
giải (1) (=) a3 + a = b3 + b
(=) (a-b).(a2+ab+b2+1) = 0 =) a=b ( vì a2+ab+b2+1>0)
phần còn lại tự giải nhé
b (=) (x+1).(x2+2x+2)=(x+2) . căn(x+1) (x>=-1)
(=) căn (x+1) . [căn(x+1) . (x2+2x+2) -x-2] = 0
=) x=-1
hay căn(x+1) . (x2+2x+2) -x-2=0
cách 1 giải phổ thông ( chuyển vế rồi bình phương)
cách 2 đặt ẩn phụ và lập hệ
đặt căn(x+1)=a (a>=0)
=) a.[x(a2+1)+2] = a2+1 và a2 - x =1
tự giải nhé
c,tạm thời chưa nghĩ ra
<=> 3x2 + 4 = √(9x4 + 36x2)
<=> (3x2 + 4)2 = 9x4 + 36x2
<=> 9x4 + 24x2 + 16 - 9x4 - 36x2 = 0
<=> 16 - 12x2 = 0
<=> 4(4 - 3x2) = 0
<=> 4 - 3x2 = 0
<=> x2 = 4/3
<=> x = √(4/3) hoặc x = -√(4/3)
Vậy
\(4x^2+3x+3=4\sqrt{x^3+3x^2}+2\sqrt{2x-1}\) ( ĐKXĐ : \(x\ge\dfrac{1}{2}\) )
\(\Leftrightarrow\) \(4x^2+3x+3-4\sqrt{x^3+3x^2}-2\sqrt{2x-1}=0\)
\(\Leftrightarrow4x^2+3x+3-2.2x\sqrt{x+3}-2\sqrt{2x-1}=0\)
\(\Leftrightarrow4x^2-2.2x\sqrt{x+3}+x+3+2x-1-2\sqrt{2x-1}+1=0\)
\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)^2+\left(\sqrt{2x-1}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-\sqrt{x+3}=0\\\sqrt{2x-1}-1=0\end{matrix}\right.\)\(\Leftrightarrow x=1\) ( Thỏa mãn ĐKXĐ)
Vậy nghiệm của phương trình là : x=1
Đặt \(\sqrt{x^2+4}=t\left(t>0\right)\)
Ta có phương trình: \(2x^2+t^2=3xt\)
\(\Leftrightarrow t^2-3xt+2x^2=0\)
Xem phương trình trên có biến t và tham số x
\(\Delta=\left(3x\right)^2-4.2x^2=x^2\)
Phương trình có 2 nghiệm: \(\hept{\begin{cases}t_1=x\\t_2=2x\end{cases}}\)
Với t=x, Ta có: \(\sqrt{x^2+4}=x\)(phương trinh vô nghiệm)
Với t=2x, Ta có \(\sqrt{x^2+4}=2x\Leftrightarrow\hept{\begin{cases}x\ge0\\x^2+4=4x^2\end{cases}\Leftrightarrow x=\frac{2\sqrt{3}}{3}}\)