Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ge\dfrac{-1}{3},x\ne0\)
pt\(\Leftrightarrow\)\(\dfrac{12x^2-4x+x-1}{4x}=\sqrt{3x+1}\)
\(\Rightarrow12x^2-3x-1=4x\sqrt{3x+1}\)
\(\Leftrightarrow\dfrac{3}{4}.16x^2-\left(3x+1\right)-\sqrt{16x^2\left(3x+1\right)}=0\)
Vì \(x\ne0\) nên chia cả 2 vế cho \(16x^2\), ta được:
\(\dfrac{3}{4}-\dfrac{3x+1}{16x^2}-\sqrt{\dfrac{3x+1}{16x^2}}=0\)
Đặt \(t=\sqrt{\dfrac{3x+1}{16x^2}}\left(t\ge0\right)\)
\(\Rightarrow t^2+t-\dfrac{3}{4}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{1}{2}\left(TM\right)\\t=\dfrac{-3}{2}\left(KTM\right)\end{matrix}\right.\)
Vậy \(\sqrt{\dfrac{3x+1}{16x^2}}=\dfrac{1}{2}\)
\(\Rightarrow4\left(3x+1\right)=16x^2\)
\(\Leftrightarrow16x^2-12x-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-1}{4}\end{matrix}\right.\)(TM)
Vậy pt có tập nghiệm là \(S=\left\{1;\dfrac{-1}{4}\right\}\)
Đk \(x\ge\frac{1}{2}\)
Pt \(\Leftrightarrow4x^2+3x-7=4\left(\sqrt{x^3+3x^2}-2\right)+2\left(\sqrt{2x-1-1}\right)\)
\(\Leftrightarrow4\frac{\left(x-1\right)\left(x+2\right)^2}{\sqrt{x^3+3x^2}+2}+4\frac{x-1}{\sqrt{2x-1}+1}-\left(x-1\right)\left(4x+7=0\right)\)
\(\Leftrightarrow\left(x-1\right)[\frac{4\left(x+2^2\right)}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-\left(4x+7\right)=0\)
\(\Leftrightarrow x=1\)Và \(\frac{4\left(x+2\right)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-4x-7=0\)( *)
Xét hàm số \(f\left(x\right)=\frac{4\left(x+2\right)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-4x-7,x\)\(\in[\frac{1}{2};+\infty]\)
Thì \(f\left(x\right)>0,\forall x\in[\frac{1}{2};+\infty]\)
=> Phương trình ( *) vô nghiệm.
a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)
\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)
a') (tiếp)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)
Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)
Với mọi \(x\ge4\), ta có:
\(\sqrt{3x+1}>0\); \(\sqrt{x-4}\ge0\)
\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)
\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)
Do đó phương trình (1) vô nghiệm.
Vậy phương trình đã cho vô nghiệm.
ĐK: \(x\ge\frac{1}{3}\)
Đặt: \(\sqrt{3x-1}=t\left(t\ge0\right)\)
Ta có pt: \(x^2-x-t^2+t=0\)
<=> \(\left(x^2-t^2\right)-\left(x-t\right)=0\)
<=> \(\left(x-t\right)\left(x+t-1\right)=0\)
<=> \(\Leftrightarrow\orbr{\begin{cases}t=x\\t=1-x\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{3x-1}=x\\\sqrt{3x-1}=1-x\end{cases}}\)
Em làm tiếp nhé!
ĐKXĐ \(x\ge\frac{1}{2}\)
Đặt \(\sqrt{x^2+2x}=a,\sqrt{2x-1}=b\left(a,b\ge0\right)\)
=> \(3a^2-b^2=3x^2+4x+1\)
Khi đó PT <=>
\(a+b=\sqrt{3a^2-b^2}\)
=> \(a^2+2ab+b^2=3a^2-b^2\)
=> \(a^2-ab-b^2=0\)
=> \(a=\frac{1+\sqrt{5}}{2}.b\)
=> \(x^2+2x=\frac{6+2\sqrt{5}}{4}.\left(2x-1\right)\)
=> \(x=\frac{1+\sqrt{5}}{2}\)thỏa mãn ĐKXĐ
Vậy \(x=\frac{1+\sqrt{5}}{2}\)
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
4x2 -2,2x,\(\sqrt{x+3}+x+3+2x-1-2\sqrt{2x-1}+1=0< =>\)
(\(\left(2x-\sqrt{x-3}\right)^2+\left(\sqrt{2x-1}-1\right)^2=0\)<=> \(\hept{\begin{cases}\sqrt{2x-1}=1\\2x=\sqrt{x-3}\end{cases}< =>\hept{\begin{cases}x=1\\4x^2=x-3\end{cases}}}\)(vô nghiệm)
Đk:\(x\ne0;x\ge-\dfrac{1}{3}\)
Pt \(\Leftrightarrow12x^2-3x-1=4x\sqrt{3x+1}\)
\(\Leftrightarrow16x^2=4x^2+4x\sqrt{3x+1}+3x+1\)
\(\Leftrightarrow16x^2=\left(2x+\sqrt{3x+1}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=2x+\sqrt{3x+1}\\4x=-\left(2x+\sqrt{3x+1}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\sqrt{3x+1}\left(1\right)\\6x=-\sqrt{3x+1}\left(2\right)\end{matrix}\right.\)
TH1 \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\4x^2=3x+1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x-1\right)\left(4x+1\right)=0\end{matrix}\right.\)\(\Rightarrow x=1\) (thỏa)
TH2\(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\36x^2=3x+1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\\left[{}\begin{matrix}x=\dfrac{1+\sqrt{17}}{24}\\x=\dfrac{1-\sqrt{17}}{24}\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow x=\dfrac{1-\sqrt{17}}{24}\)(tm)
Vậy...
Lời giải:
ĐKXĐ: $x\ge \frac{-1}{3}; x\neq 0$
PT \(\Leftrightarrow 3(x-1)+\frac{x-1}{4x}=\sqrt{3x+1}-2\)
\(\Leftrightarrow 3(x-1)+\frac{x-1}{4x}=\frac{3(x-1)}{\sqrt{3x+1}+2}\)
\(\Leftrightarrow (x-1)(3+\frac{1}{4x}-\frac{3}{\sqrt{3x+1}+2})=0\)
Nếu $x-1=0\Leftrightarrow x=1$ (tm)
Nếu $3+\frac{1}{4x}-\frac{3}{\sqrt{3x+1}+2}=0$
$\Leftrightarrow 12x\sqrt{3x+1}+12x+\sqrt{3x+1}+2=0$
$\Leftrightarrow \sqrt{3x+1}(12x+1)=-(12x+2)$
Từ đây suy ra $x\leq \frac{-1}{6}$
Bình phương 2 vế:
$(3x+1)(12x+1)^2=[(12x+1)+1]^2$
$\Leftrightarrow 3x(12x+1)^2=2(12x+1)+1$
$\Leftrightarrow 144x^3+24x^2-7x-1=0$
$\Leftrightarrow (4x+1)(36x^2-3x-1)=0$
Vì $x\leq \frac{-1}{6}$ nên $x=\frac{1-\sqrt{17}}{24}$