K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2020

Bạn kiểm tra lại đề bài nhé! Theo mình thì nên sửa là:

\(2\left(1-x\right)\sqrt{x^2+2x-1}=x^2-2x-1\)

đặt \(\sqrt{2x-x^2}=a\)

phương trình trở thành:

\(\sqrt{1+a}+\sqrt{1-a}=2\left(1-a^2\right)^2\left(1-2a^2\right)\)

đến đây thì khai triển đi

22 tháng 8 2017

1/ Đặt  \(\hept{\begin{cases}\sqrt{x+1}=a\\\sqrt{x}=b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a-\frac{a}{b}-1=0\\a^2-b^2=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}ab=a+b\\\left(a+b\right)\left(a-b\right)=1\end{cases}}\)

Tới đây b làm nốt nhé

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

10 tháng 3 2020

ĐKXĐ : ....

PT đã cho tương đương với :

\(\left(x^2-x+2\right)-\left(2x+1\right)\sqrt{x^2-x+2}+x^2+x=0\)  ( 1 )

đặt \(\sqrt{x^2-x+2}=t\left(t\ge0\right)\)

\(\left(1\right)\)trở thành : \(t^2-\left(2x+1\right)t+x^2+x=0\)

\(\Delta=\left(2x+1\right)^2-4\left(x^2+x\right)=1>0\)

\(\Rightarrow t_1=\frac{2x+1-1}{2}=x\Rightarrow\sqrt{x^2-x+2}=x\Rightarrow x=2\)

\(t_2=\frac{2x+1+1}{2}=x+1\Rightarrow\sqrt{x^2-x+2}=x+1\Rightarrow x^2-x+2=x^2+2x+1\Rightarrow x=\frac{1}{3}\)

Vậy ...

18 tháng 8 2015

Điều kiện xác định của phương trình \(x\ge0.\) Ta thấy \(x=0\)  là nghiệm. Ta xét trường hợp \(x>0.\)

Nhân liên hợp, giản ước \(x\) hai vế, phương trình tương đương với  \(\sqrt{2x^2-2x+1}+x-1=\sqrt{x^2+x}-\sqrt{x}\)     (1)

\(\Leftrightarrow\frac{x^2}{\sqrt{2x^2-2x+1}-x+1}=\frac{x^2}{\sqrt{x^2+x}+\sqrt{x}}\)

\(\Leftrightarrow\sqrt{2x^2-2x+1}-x+1=\sqrt{x^2+x}+\sqrt{x}\)           (2)

 

Lấy (1)-(2) ta được \(2\left(x-1\right)=-2\sqrt{x}\). Đến đặt \(t=\sqrt{x}\)  ta được phương trình bậc hai, giải ra sẽ được nghiệm \(x=\frac{3-\sqrt{5}}{2}\), (chú ý loại nghiệm t âm). 

Vậy phương trình đã cho có hai nghiệm là   \(x=0,\frac{3-\sqrt{5}}{2}\)

12 tháng 7 2017

\(x^2-2x-2-2\sqrt{2x+1}=0\)

\(\Leftrightarrow x^2-2x-8-\left(2\sqrt{2x+1}-6\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+2\right)-\frac{4\left(2x+1\right)-36}{2\sqrt{2x+1}+6}=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+2\right)-\frac{8\left(x-4\right)}{2\sqrt{2x+1}+6}=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+2-\frac{8}{2\sqrt{2x+1}+6}\right)=0\)

Thấy: \(x+2-\frac{8}{2\sqrt{2x+1}+6}>0\)

\(\Rightarrow x-4=0\Rightarrow x=4\)

13 tháng 7 2017

\(Xét-mẫu-của-biểu-thức:\left(đk:x\ge1\right).ta-có:x-\sqrt{2\left(x^2+5\right)}=\frac{-\left(x^2+10\right)}{x+\sqrt{2\left(x^2+5\right)}}< 0\\ .\)Vậy nó luôn <0 với đk x>=1
\(Xét-tử:đặt-nó-bằng-A=\left(x-2\right)^2-\left(\sqrt{x-1}-1\right)^2\left(2x-1\right)=2\sqrt{x-1}\left(2x-1\right)-\left(x-1\right)\left(x+4\right)\\ =\sqrt{x-1}\left(2\left(2x-1\right)-\sqrt{x-1\left(x+4\right)}\right)\ge0.\\ \)\(=>\left(2\left(2x-1\right)-\sqrt{\left(x-1\right)}\left(x+4\right)\right)\ge0< =>\frac{\left(5-x\right)\left(x-2\right)^2}{2\left(2x-1\right)+\left(x-1\right)\left(x+4\right)}\ge0< =>x\le5\) Vậy . \(1\le x\le5\)
 

15 tháng 7 2017

Thank you ^^^